Open Access
Issue
EPJ Web Conf.
Volume 183, 2018
DYMAT 2018 - 12th International Conference on the Mechanical and Physical Behaviour of Materials under Dynamic Loading
Article Number 04011
Number of page(s) 6
Section Industrial Applications
DOI https://doi.org/10.1051/epjconf/201818304011
Published online 07 September 2018
  1. R. Balieu, F. Lauro, B. Bennani, R. Delille, Matsumoto, T., E. Mottola, A fully coupled elastoviscoplastic damage model at finite strains for mineral filled semi-crystalline polymer. International Journal of Plasticity, 51, 241-270 (2013) [CrossRef] [Google Scholar]
  2. R. Balieu, F. Lauro, B. Bennani, T. Matsumoto, E. Mottola, Non-associated viscoplasticity coupled with an integral-type non local damage model for mineral filled semi-crystalline polymers. Computers and Structures, 134, 18-31(2014) [CrossRef] [Google Scholar]
  3. F. Lauro, B. Bennani, D. Morin., and A. Epee, The SEE method for determination of behaviour laws for strain rate dependant material: Application to polymer material. International Journal of Impact Engineering, 37, 715-722, impact Loading of Lightweight Structures (2010) [CrossRef] [Google Scholar]
  4. A. Epee, F. Lauro, B. Bennani, and B. Bourel, Constitutive model for a semi-crystalline polymer under dynamic loading. International Journal of Solids and Structures, 48, 1590-1599 (2011) [CrossRef] [Google Scholar]
  5. Précis matières plastiques, J.P. Trotignon & co., éd. Nathan (1996) [Google Scholar]
  6. Polypropylene, The Definitive User’s Guide & Databook, Clive Maier, Teresa Calafut, PDL (1998) [Google Scholar]
  7. EUROTALC - IMA Europe, Talc Publication [Google Scholar]
  8. E. Baquet, Ph.D. thesis, Modélisation thermomécanique visco-hyperélastique du comportement d’un polymère semi-cristallin : application au cas d’une matrice polyamide 6.6., https://pastel.archivesouvertes.fr/pastel-00715693, Submitted on 9 Jul 2012 [Google Scholar]
  9. A. Maurel-Pantel, E. Baquet, J. Bikard, J.-L. Bouvard, and N. Billon, A thermo-mechanical large deformation constitutive model for polymers based on material network description: Application to a semi-crystalline polyamide 66. International Journal of Plasticity, 67: 102-126, 2015 [CrossRef] [Google Scholar]
  10. N. Billon, New constitutive modeling for timedependent mechanical behavior of polymers close to glass transition: Fundamentals and experimental validation. Journal of Applied Polymer Science, 125 (6): 4390-4401 (2012) [CrossRef] [Google Scholar]
  11. F.-J. Wortmann, K.V. Schulz. Stress relaxation and time/temperature superposition of polypropylene fibres. Polymer Vol. 36 Ko. 2, PP. 315-321 (1995) [CrossRef] [Google Scholar]
  12. A. Roncin, Ph.D. thesis, Étude de la modification des propriétés rhéologiques linéaires et non linéaires par ingénierie moléculaire. Vers le contrôle des propriétés adhésives de matériaux autocollants, www.theses.fr. Submitted on 12 Dec 2011. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.