Open Access
EPJ Web Conf.
Volume 191, 2018
XXth International Seminar on High Energy Physics (QUARKS-2018)
Article Number 02015
Number of page(s) 7
Section Standard Model and Beyond
Published online 31 October 2018
  1. CMS Luminosity-Public Results [Google Scholar]
  2. M. I. Vysotsky, E. V. Zhemchugov. Equivalent photons in photon-photon and ion-ion collisions at the LHC. arXiv:1806.07238 (2018). [Google Scholar]
  3. E. Fermi. Über die Theorie das Stoßes zwischen Atomen und elektrisch geladenen Teilchen. Z.Physik 29, 315 (1924). [CrossRef] [Google Scholar]
  4. C. F. V. Weizsäcker. Ausstrahlung bei Stößen sehr schneller Elektronen. Z.Physik 88, 612 (1934). [CrossRef] [Google Scholar]
  5. E. J. Williams. Correlation of certain collision problems with radiation theory. Kgl. Danske Vidensk. Selskab. Mat.-Fiz. Medd. 13, 4 (1935). [Google Scholar]
  6. L. D. Landau, E. M. Lifshitz. Production of electrons and positrons by a collision of two particles. Phys.Zs.Sowjet 6, 244 (1934). [Google Scholar]
  7. H. Terazawa, Two-photon processes for particle production at high energies. Rev.Mod.Phys. 4, 615 (1973). [CrossRef] [Google Scholar]
  8. V. M. Budnev, I. F. Ginzburg, G. V. Meledin, V. G. Serbo. The two-photon particle production and the equivalent photon approximation. Particles & Nuclei 4, 239 (1973) [in Russian]. [Google Scholar]
  9. V. M. Budnev, I. F. Ginzburg, G. V. Meledin, V. G. Serbo. The two-photon particle production mechanism. Physical problems. Applications. Equivalent photon approximation. Phys.Rep. 15, 181 (1975) [CrossRef] [EDP Sciences] [Google Scholar]
  10. Particle Data Group. Review of Particle Physics. Chinese Physics C 40, 100001 (2016). [Google Scholar]
  11. S. Pacetti, R. B. Ferroli, E. Tomasi-Gustafsson. Proton electromagnetic form factors: basic notions, present achievements and future perspectives. Phys.Rep. 550, 1 (2015). [CrossRef] [Google Scholar]
  12. U. D. Jentschura, V. G. Serbo. Nuclear form factor, validity of the equivalent photon approximation and Coulomb corrections to muon pair production in photon-nucleus and nucleus-nucleus collisions. Eur.Phys.J. C64, 309 (2009). arXiv:0908.3853 [CrossRef] [Google Scholar]
  13. G. Breit, J. A. Wheeler. Collision of two light quanta. Phys.Rev. 46, 1087 (1934). [NASA ADS] [CrossRef] [Google Scholar]
  14. The ATLAS Collaboration. Measurement of the exclusive γγ → μ+μ- process in proton-proton collisions at √s = 13 TeV with the ATLAS detector. Phys.Lett. B 777, 303 (2018). arXiv:1708.04053 [CrossRef] [Google Scholar]
  15. The ATLAS Collaboration. Measurement of high-mass dimuon pairs in ultra-peripheral lead-lead collisions at √sNN = 5:02 TeV with the ATLAS detector at the LHC. ATLASCONF-2016-025 (2016). [Google Scholar]
  16. L. A. Harland-Lang, V. A. Khoze, M. G. Ryskin. Exclusive physics at the LHC with SuperChic 2. Eur.Phys.J. C76, 9 (2016). arXiv:1508.02718 [CrossRef] [Google Scholar]
  17. M. Dyndal, L. Schoeffel. The role of finite-size effects on the spectrum of equivalent photons in proton-proton collisions at the LHC. Phys.Lett.B 741, 66 (2015). arXiv:1410.2983 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.