Open Access
Issue
EPJ Web Conf.
Volume 192, 2018
QCD@Work 2018 - International Workshop on Quantum Chromodynamics - Theory and Experiment
Article Number 00019
Number of page(s) 8
DOI https://doi.org/10.1051/epjconf/201819200019
Published online 14 November 2018
  1. M. A. Stephanov, “Non-Gaussian fluctuations near the QCD critical point,” Phys. Rev. Lett. 102 (2009) 032301, arXiv:0809.3450 [hep-ph] [CrossRef] [PubMed] [Google Scholar]
  2. M. A. Stephanov, “On the sign of kurtosis near the QCD critical point,” Phys. Rev. Lett. 107 (2011) 052301, arXiv:1104.1627 [hep-ph]. [CrossRef] [PubMed] [Google Scholar]
  3. M. Asakawa, S. Ejiri, and M. Kitazawa, “Third moments of conserved charges as probes of QCD phase structure,” Phys. Rev. Lett. 103 (2009) 262301, arXiv:0904.2089 [nucl-th] [CrossRef] [PubMed] [Google Scholar]
  4. C. Athanasiou, K. Rajagopal, and M. Stephanov, “Using Higher Moments of Fluctuations and their Ratios in the Search for the QCD Critical Point,” Phys. Rev. D82 (2010) 074008, arXiv:1006.4636 [hep-ph]. [Google Scholar]
  5. STAR Collaboration, L. Adamczyk et al., “Energy Dependence of Moments of Netproton Multiplicity Distributions at RHIC,” Phys. Rev. Lett. 112 (2014) 032302, arXiv:1309.5681 [nucl-ex]. [CrossRef] [PubMed] [Google Scholar]
  6. STAR Collaboration, M. M. Aggarwal et al., “Higher Moments of Net-proton Multiplicity Distributions at RHIC,” Phys. Rev. Lett. 105 (2010) 022302, arXiv:1004.4959 [nucl-ex]. [CrossRef] [PubMed] [Google Scholar]
  7. X. Luo and N. Xu, “Search for the QCD Critical Point with Fluctuations of Conserved Quantities in Relativistic Heavy-Ion Collisions at RHIC : An Overview,” Nucl. Sci. Tech. 28 no. 8, (2017) 112, arXiv:1701.02105 [nucl-ex]. [CrossRef] [Google Scholar]
  8. Z. Fodor and S. D. Katz, “A New method to study lattice QCD at finite temperature and chemical potential,” Phys. Lett. B534 (2002) 87-92, arXiv:hep-lat/0104001 [hep-lat]. [NASA ADS] [CrossRef] [Google Scholar]
  9. H.-T. Ding, F. Karsch, and S. Mukherjee, “Thermodynamics of stronginteraction matter from Lattice QCD,” Int. J. Mod. Phys. E24 no. 10, (2015) 1530007, arXiv:1504.05274 [hep-lat]. [CrossRef] [Google Scholar]
  10. C. Schmidt and S. Sharma, “The phase structure of QCD,” J. Phys. G44 no. 10, (2017) 104002, arXiv:1701.04707 [hep-lat]. [CrossRef] [Google Scholar]
  11. V. Vovchenko, J. Steinheimer, O. Philipsen, and H. Stoecker, “Cluster Expansion Model for QCD Baryon Number Fluctuations: No Phase Transition at μB=T < π,” arXiv:1711.01261 [hep-ph]. [Google Scholar]
  12. R. D. Pisarski and F. Wilczek, “Remarks on the Chiral Phase Transition in Chromodynamics,” Phys. Rev. D29 (1984) 338-341. [Google Scholar]
  13. Y. Hatta and T. Ikeda, “Universality, the QCD critical / tricritical point and the quark number susceptibility,” Phys. Rev. D67 (2003) 014028, arXiv:hep-ph/0210284 [hep-ph]; [Google Scholar]
  14. T. M. Schwarz, S. P. Klevansky, and G. Papp, “The Phase diagram and bulk thermodynamical quantities in the NJL model at finite temperature and density,” Phys. Rev. C60 (1999) 055205, arXiv:nucl-th/9903048 [nucl-th]. [Google Scholar]
  15. P. Zhuang, M. Huang, and Z. Yang, “Density effect on hadronization of a quark plasma,” Phys. Rev. C62 (2000) 054901, arXiv:nucl-th/0008043 [nucl-th]. [Google Scholar]
  16. J.-W. Chen, J. Deng, and L. Labun, “Baryon susceptibilities, non-Gaussian moments, and the QCD critical point,” Phys. Rev. D92 no. 5, (2015) 054019, arXiv:1410.5454 [hep-ph]. [Google Scholar]
  17. J.-W. Chen, J. Deng, H. Kohyama, and L. Labun, “Robust characteristics of nongaussian fluctuations from the NJL model,” Phys. Rev. D93 no. 3, (2016) 034037, arXiv:1509.04968 [hep-ph]. [Google Scholar]
  18. W.-j. Fu and Y.-l. Wu, “Fluctuations and Correlations of Conserved Charges near the QCD Critical Point,” Phys. Rev. D82 (2010) 074013, arXiv:1008.3684 [hep-ph]. [Google Scholar]
  19. K. Fukushima, “Phase diagrams in the three-flavor Nambu-Jona-Lasinio model with the Polyakov loop,” Phys. Rev. D77 (2008) 114028, arXiv:0803.3318 [hep-ph]. [Erratum: Phys. Rev.D78,039902(2008)]. [Google Scholar]
  20. N. Weiss, “The Effective Potential for the Order Parameter of Gauge Theories at Finite Temperature,” Phys. Rev. D24 (1981) 475. [Google Scholar]
  21. C. Ratti, S. Roessner, M. A. Thaler, and W. Weise, “Thermodynamics of the PNJL model,” Eur. Phys. J. C49 (2007) 213-217, arXiv:hep-ph/0609218 [hep-ph]. [CrossRef] [Google Scholar]
  22. G.-y. Shao, Z.-d. Tang, X.-y. Gao, and W.-b. He, “Baryon number fluctuations and QCD phase structure,” arXiv:1708.04888 [hep-ph]. [Google Scholar]
  23. X.-y. Xin, S.-x. Qin, and Y.-x. Liu, “Improvement on the Polyakov-Nambu-Jona-Lasinio model and the QCD phase transitions,” Phys. Rev. D89 no. 9, (2014) 094012. [Google Scholar]
  24. G.-y. Shao, Z.-d. Tang, M. Di Toro, M. Colonna, X.-y. Gao, and N. Gao, “Phase transition of strongly interacting matter with a chemical potential dependent Polyakov loop potential,” Phys. Rev. D94 no. 1, (2016) 014008, arXiv:1603.09033 [nucl-th]. [Google Scholar]
  25. M. Dutra, O. Louren?o, A. Delfino, T. Frederico, and M. Malheiro, “Polyakov-Nambu-Jona-Lasinio phase diagrams and quarkyonic phase from order parameters,” Phys. Rev. D88 no. 11, (2013) 114013, arXiv:1312.1130 [hep-ph]. [Google Scholar]
  26. E. S. Bowman and J. I. Kapusta, “Critical Points in the Linear Sigma Model with Quarks,” Phys. Rev. C79 (2009) 015202, arXiv:0810.0042 [nucl-th]. [Google Scholar]
  27. H. Mao, J. Jin, and M. Huang, “Phase diagram and thermodynamics of the Polyakov linear sigma model with three quark flavors,” J. Phys. G37 (2010) 035001, arXiv:0906.1324 [hep-ph]. [CrossRef] [Google Scholar]
  28. B. J. Schaefer and M.Wagner, “QCD critical region and higher moments for three flavor models,” Phys. Rev. D85 (2012) 034027, arXiv:1111.6871 [hep-ph]. [Google Scholar]
  29. B.-J. Schaefer and M.Wagner, “Higher-order ratios of baryon number cumulants,” Central Eur. J. Phys. 10 (2012) 1326-1329, arXiv:1203.1883 [hep-ph]. [Google Scholar]
  30. B.-J. Schaefer, J. M. Pawlowski, and J. Wambach, “The Phase Structure of the Polyakov-Quark-Meson Model,” Phys. Rev. D76 (2007) 074023, arXiv:0704.3234 [hep-ph]. [Google Scholar]
  31. S.-x. Qin, L. Chang, H. Chen, Y.-x. Liu, and C. D. Roberts, “Phase diagram and critical endpoint for strongly-interacting quarks,” Phys. Rev. Lett. 106 (2011) 172301, arXiv:1011.2876 [nucl-th]. [CrossRef] [PubMed] [Google Scholar]
  32. J. Luecker, C. S. Fischer, L. Fister, and J. M. Pawlowski, “Critical Point and Deconfinement from Dyson-Schwinger Equations,” PoS CPOD2013 (2013) 057, arXiv:1308.4509 [hep-ph]. [Google Scholar]
  33. W.-j. Fu, J. M. Pawlowski, F. Rennecke, and B.-J. Schaefer, “Baryon number fluctuations at finite temperature and density,” Phys. Rev. D94 no. 11, (2016) 116020, arXiv:1608.04302 [hep-ph]. [Google Scholar]
  34. R. Critelli, J. Noronha, J. Noronha-Hostler, I. Portillo, C. Ratti, and R. Rougemont, “Critical point in the phase diagram of primordial quark-gluon matter from black hole physics,” Phys. Rev. D96 no. 9, (2017) 096026, arXiv:1706.00455 [nucl-th]; [Google Scholar]
  35. Z. Li, Y. Chen, D. Li, and M. Huang, “Locating the QCD critical end point through the peaked baryon number susceptibilities along the freeze-out line,” Chin. Phys. C42 no. 1, (2018) 013103, arXiv:1706.02238 [hep-ph]. [CrossRef] [Google Scholar]
  36. Z. Li, K. Xu, X. Wang and M. Huang, arXiv:1801.09215 [hep-ph]. [Google Scholar]
  37. A. Bhattacharyya, S. K. Ghosh, S. Maity, S. Raha, R. Ray, K. Saha and S. Upadhaya, Phys. Rev. D 95, no. 5, 054005 (2017) doi:10.1103/PhysRevD.95.054005 [arXiv:1609.07882 [hep-ph]]. [CrossRef] [Google Scholar]
  38. S. K. Ghosh, T. K. Mukherjee, M. G. Mustafa and R. Ray, Phys. Rev. D 77, 094024 (2008) doi:10.1103/PhysRevD.77.094024 [arXiv:0710.2790 [hep-ph]]. [CrossRef] [Google Scholar]
  39. A. Bazavov et al., “The QCD Equation of State to O(μ6B) from Lattice QCD,” Phys. Rev. D95 no. 5, (2017) 054504, arXiv:1701.04325 [hep-lat]. [Google Scholar]
  40. S. Das [STAR Collaboration], EPJ Web Conf. 90, 08007 (2015) doi:10.1051/epjconf/20159008007 [arXiv:1412.0499 [nucl-ex]]. [CrossRef] [Google Scholar]
  41. V. V. Begun, V. Vovchenko and M. I. Gorenstein, J. Phys. Conf. Ser. 779, no. 1, 012080 (2017) doi:10.1088/1742-6596/779/1/012080 [arXiv:1609.04827 [nucl-th]]. [CrossRef] [Google Scholar]
  42. W. Fan, X. Luo, and H.-S. Zong, “Mapping the QCD phase diagram with susceptibilities of conserved charges within Nambu-Jona-Lasinio model,” Int. J. Mod. Phys. A32 no. 11, (2017) 1750061, arXiv:1608.07903 [hep-ph]; [CrossRef] [Google Scholar]
  43. S. Mukherjee, R. Venugopalan and Y. Yin, Phys. Rev. C 92, no. 3, 034912 (2015). [CrossRef] [Google Scholar]
  44. S. Mukherjee, R. Venugopalan and Y. Yin, Phys. Rev. Lett. 117, no. 22, 222301 (2016); [CrossRef] [PubMed] [Google Scholar]
  45. P. Braun-Munzinger, K. Redlich and J. Stachel, In *Hwa, R.C. (ed.) et al.: Quark gluon plasma* 491-599, [nucl-th/0304013]. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.