Open Access
Issue
EPJ Web Conf.
Volume 198, 2019
Quantum Technology International Conference 2018 (QTech 2018)
Article Number 00015
Number of page(s) 8
DOI https://doi.org/10.1051/epjconf/201919800015
Published online 15 January 2019
  1. M. Kitagawa and M. Ueda, Squeezed spin states, Phys. Rev. A 47, 5138 (1993). [CrossRef] [PubMed] [Google Scholar]
  2. D. J. Wineland, J. J. Bollinger, W. M. Itano, F. L. Moore, and D. J. Heinzen, Spin squeezing and reduced quantum noise in spectroscopy, Phys. Rev. A 46, R6797 (1992). [CrossRef] [PubMed] [Google Scholar]
  3. D. J. Wineland, J. J. Bollinger, W. M. Itano, and D. J. Heinzen, Squeezed atomic states and projection noise in spectroscopy, Phys. Rev. A 50, 67 (1994). [CrossRef] [PubMed] [Google Scholar]
  4. A. Einstein, B. Podolsky, N. Rosen: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777 (1935). [Google Scholar]
  5. M.A Nielsen, I.L Chuang: Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000). [Google Scholar]
  6. J. Maa, X. Wanga, C.P. Suna, F. Nori, Quantum spin squeezing, Phy. Reports, 509, 89 (2011). [Google Scholar]
  7. J. K. Korbicz, J. I. Cirac and M. Lewenstein, Spin squeezing inequalities and entanglement of N qubit states Phys. Rev. Lett. 95 120502 (2005). [CrossRef] [PubMed] [Google Scholar]
  8. J. K. Korbicz, O. Gühne, M. Lewenstein, H. Häffner, C. F. Roos and R. Blatt, Generalized spin-squeezing inequalities in N-qubit systems: theory and experiment Phys. Rev. A 74 052319 (2006). [Google Scholar]
  9. G. Toth, . Knapp, O. Gühne and H. J. Briegel, Spin squeezing and entanglement Phys. Rev. A 79 042334 (2009). [Google Scholar]
  10. I. Saideh, S. Felicetti, T. Coudreau, P. Milman and A. Keller, Generalized spin-squeezing inequalities for particle number with quantum fluctuations Phys. Rev. A 94 032312 (2016). [Google Scholar]
  11. E. J. Heller, Bound-state eigenfunctions of classically chaotic Hamiltonian systems: Scars of periodic orbits, Phys. Rev. Lett. 53, 1515 (1984). [Google Scholar]
  12. R. Schack, G. M. D’Ariano, and C. M. Caves, Hypersensitivity to perturbation in the quantum kicked top, Phys. Rev. E 50, 972 (1994). [Google Scholar]
  13. J. Vidal, Phys. Rev. A 73, 062318 (2006). [Google Scholar]
  14. J. Vidal, G. Palacios, and R. Mosseri, Entanglement in a second-order quantum phase transition, Phys. Rev. A 69, 022107 (2004). [Google Scholar]
  15. S. T. Ali, J. P. Antoine, J. P. Gazeau and U. A. Mueller, Coherent states and their generalizations: a mathematical overview Rev. Math. Phys. 7 1013 (1995). [Google Scholar]
  16. R. Holtz and J. Hanus, On coherent spin states J. Phys. A: Mathematical Nuclear and General 74 (1974). [Google Scholar]
  17. C. Orzel, A. Tuchman, M. Fenselau, M. Yasuda, and M. Kasevich, Squeezed states in a Bose-Einstein condensate, Science 291, 2386 (2001). [Google Scholar]
  18. J. Esteve, C. Gross, A. Weller, S. Giovanazzi, and M. K. Oberthaler, Squeezing and entanglement in a Bose-Einstein condensate, Nature 455, 1216 (2008). [CrossRef] [PubMed] [Google Scholar]
  19. C. Gross, T. Zibold, E. Nicklas, J. Esteve, and M. K. Oberthaler, Nonlinear atom interferometer surpasses classical precision limit, Nature 464, 1165 (2010). [CrossRef] [PubMed] [Google Scholar]
  20. M. F. Riedel, P. Boehi, Y. Li, T. W. Haensch, A. Sinatra, and P. Treutlein, Atom-chipbased generation of entanglement for quantum metrology, Nature 464, 1170 (2010). [CrossRef] [PubMed] [Google Scholar]
  21. J. Hald, J. Sφrensen, C. Schori, and E. Polzik, Spin squeezed atoms: A macroscopic entangled ensemble created by light, Phys. Rev. Lett. 83, 1319 (1999). [Google Scholar]
  22. X. Wang, A. Miranowicz, Y. Liu, C. P. Sun and F. Nori, Sudden vanishing of spin squeezing under decoherence Phys. Rev. A 81 022106 (2010). [Google Scholar]
  23. Kapil K. Sharma and Swaroop Ganguly, Positive impact of decoherence on spin squeezing in GHZ and W states, J. Phys. Commun., 2 015012 (2018). [Google Scholar]
  24. J. Stockton, J. Geremia, A. Doherty, and H. Mabuchi, Characterizing the entanglement of symmetric many-particle spin-1/2 systems, Phys. Rev. A 67, 022112 (2003). [Google Scholar]
  25. A. Micheli, D. Jaksch, J. Cirac, and P. Zoller, Many-particle entanglement in two-component Bose-Einstein condensates, Phys. Rev. A 67, 013607 (2003). [Google Scholar]
  26. Y. Li, Y. Castin, and A. Sinatra, Optimum spin squeezing in Bose-Einstein condensates with particle losses, Phys. Rev. Lett. 100, 210401 (2008). [CrossRef] [PubMed] [Google Scholar]
  27. X. J. Yi, J. M. Wang, Spin Squeezing of Superposition of Multi-Qubit GHZ State and W State, Int. J. Theor. Phys 50 2520 (2011). [Google Scholar]
  28. X. J. Yi, G. Q. Huang, J. M. Wang, Spin Squeezing in Superposition of GHZ State and W States, Int. J. Theor. Phys. 51 2960 (2012). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.