Open Access
Issue
EPJ Web Conf.
Volume 214, 2019
23rd International Conference on Computing in High Energy and Nuclear Physics (CHEP 2018)
Article Number 06003
Number of page(s) 8
Section T6 - Machine learning & analysis
DOI https://doi.org/10.1051/epjconf/201921406003
Published online 17 September 2019
  1. L. Evans, P. Bryant, JINST 3, S08001 (2008) [Google Scholar]
  2. R. Brun, F. Bruyant, F. Carminati, S. Giani, M. Maire, A. McPherson, G. Patrick, L. Ur-ban, CERN-W5013, CERN-W-5013, W5013, W-5013 (1994) [Google Scholar]
  3. S. Agostinelliet al. (GEANT4), Nucl. Instrum. Meth. A. 506, 250 (2003) [Google Scholar]
  4. A. Ferrari, P.R. Sala, A. Fasso, J. Ranft, CERN-2005-010, SLAC-R-773, INFN-TC-05-11 (2005) [Google Scholar]
  5. I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, Y. Bengio, in NIPS (2014) [Google Scholar]
  6. K. Deja, T. Trzcinski, L. Graczykowski, for the ALICE Collaboration, Generative Models for Fast Cluster Simulations in the TPC for the ALICE Experiment, in 3rd Conference on Information Technology, Systems Research and Computational Physics (2018) [Google Scholar]
  7. M. Mirza, S. Osindero, arXiv preprint arXiv:1411.1784 (2014) [Google Scholar]
  8. G. Dellacasa et al. (ALICE), CERN-OPEN-2000-183, CERN-LHCC-2000-001 (2000) [Google Scholar]
  9. B. Abelev et al. (ALICE), J. Phys. G41, 087001 (2014) [Google Scholar]
  10. K. Aamodt et al. (ALICE), JINST 3, S08002 (2008) [Google Scholar]
  11. A. Radford, L. Metz, S. Chintala, CoRR abs/1511.06434 (2015) [Google Scholar]
  12. S. Hochreiter, J. Schmidhuber, Neural computation 9, 1735 (1997) [CrossRef] [Google Scholar]
  13. M. Paganini, L. de Oliveira, B. Nachman, CoRR abs/1705.02355 (2017) [Google Scholar]
  14. G.R. Khattak, S. Vallecorsa, F. Carminati, Three Dimensional Energy Parametrized Generative Adversarial Networks for Electromagnetic Shower Simulation (2018) [Google Scholar]
  15. T. Sjostrand, S. Mrenna, P.Z. Skands, JHEP 05, 026 (2006), hep-ph/0603175 [NASA ADS] [CrossRef] [Google Scholar]
  16. P.Z. Skands, Phys. Rev. D82, 074018 (2010), 1005.3457 [Google Scholar]
  17. T. Karras, T. Aila, S. Laine, J. Lehtinen, CoRR abs/1710.10196 (2017) [Google Scholar]
  18. N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov, JMLR 15, 1929 (2014) [Google Scholar]
  19. X. Glorot, A. Bordes, Y. Bengio, Deep sparse rectifier neural networks, in International Conference on Artificial Intelligence and Statistics (2011) , pp. 315–323 [Google Scholar]
  20. S. Ioffe, C. Szegedy, Batch normalization: Accelerating deep network training by re-ducing internal covariate shift , in ICML (2015) [Google Scholar]
  21. D.P. Kingma, J. Ba, CoRR abs/1412.6980 (2014) [Google Scholar]
  22. X. Glorot, Y. Bengio, Understanding the difficulty of training deep feedforward neural networks, in International Conference on Artificial Intelligence and Statistics (2010), pp. 249–256 [Google Scholar]
  23. F. Chollet et al., Keras, https://github.com/fchollet/keras (2015) [Google Scholar]
  24. M. Abadi et al., TensorFlow: A system for large-scale machine learning, in (OSDI 16) (2016), pp. 265–283 [Google Scholar]
  25. M. Lucic, K. Kurach, M. Michalski, S. Gelly, O. Bousquet, CoRR abs/1711.10337 (2017) [Google Scholar]
  26. A.A.D.P. Suaide, C.A.G. Prado, T. Alt, L. Aphecetche, N. Agrawal, A. Avasthi, M. Bachet al., O2: A novel combined online and offline computing system for the ALICE Experiment after 2018, in Journal of Physics: Conference Series (2014), Vol. 513, p. 012037 [CrossRef] [Google Scholar]
  27. O. Seiskari, J. Kommeri, T. Niemi, arXiv preprint arXiv:1209.5235 (2012) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.