Open Access
Issue
EPJ Web Conf.
Volume 214, 2019
23rd International Conference on Computing in High Energy and Nuclear Physics (CHEP 2018)
Article Number 06008
Number of page(s) 5
Section T6 - Machine learning & analysis
DOI https://doi.org/10.1051/epjconf/201921406008
Published online 17 September 2019
  1. M. Schneider, The Data Quality Monitoring Software for the CMS experiment at the LHC: past, present and future, in this conference (2018) [Google Scholar]
  2. V. Rapsevicius et al., CMS Run Registry: Data certification bookkeeping and publication system, in IOP Conf. Ser J Phys Confer Ser (2011), 331, p. 042038 [Google Scholar]
  3. M. Borisyak, F. Ratnikov, D. Derkach, A. Ustyuzhanin, Towards automation of data quality system for CERN CMS experiment, in IOP Conf. Ser J Phys Confer Ser (2017, doi: 10.1088/1742-6596/898/9/092041), 898, p. 092041s [Google Scholar]
  4. M. Della Negra, L. Foà, A. Hervé, A. Petrilli, Tech. Rep. CERN/LHCC-2005-023, CMS computing (2005) [Google Scholar]
  5. I. Goodfellow, Y. Bengio, A. Courville, Deep Learning (pages 499–523) (MIT Press, 2016) [Google Scholar]
  6. N. Tishby, N. Zaslavsky, Deep learning and the information bottleneck principle (2015). arXiv:1503.02406 [Google Scholar]
  7. R. Shwartz-Ziv, N. Tishby, Opening the black box of deep neural networks via information (2017). arXiv:1703.00810 [Google Scholar]
  8. M. Ranzato, C. Poultney, S. Chopra, Y. LeCun, Efficient Learning of Sparse Representations with an Energy-based Model, in Proceedings of NIPS (2006), pp. 1137–1144 [Google Scholar]
  9. K. He, X. Zhang, S. Ren, J. Sun, Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification, in Proceedings to ICCV (2015), pp. 1026–1034 [Google Scholar]
  10. F. Chollet et al., Keras, https://keras.io (2015) [Google Scholar]
  11. M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard et al., Tensorflow: a system for large-scale machine learning., in OSDI (2016), 16, pp. 265–283 [Google Scholar]
  12. D. Kingma, J. Ba, Adam: A method for stochastic optimization (2014). arXiv:1412.6980 http://www.belle2.org [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.