Open Access
Issue
EPJ Web Conf.
Volume 214, 2019
23rd International Conference on Computing in High Energy and Nuclear Physics (CHEP 2018)
Article Number 06018
Number of page(s) 8
Section T6 - Machine learning & analysis
DOI https://doi.org/10.1051/epjconf/201921406018
Published online 17 September 2019
  1. BM@N Conceptual Design Report (BM@N collaboration) [Electronic resource]. - Mode of access: http://nica.jinr.ru/files/BM@N/BMN_CDR.pdf [Google Scholar]
  2. Baranov D., Mitsyn S., Ososkov G., Goncharov P., Tsytrinov A. Novel approach to the particle track reconstruction based on deep learning methods // Selected Papers of the 26th International Symposium on Nuclear Electronics and Computing (NEC 2017), Budva, Montenegro, September 25-29, 2017. - CEUR Proceedings. - Vol. 2023. pp 37–45. [Google Scholar]
  3. Frühwirth R. Application of Kalman filtering to track and vertex fitting //Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. - 1987. - . 262. - №. 2-3. - . 444–450. [Google Scholar]
  4. J.-R. Vlimant, Machine Learning in Tracking, Hammers … Nails, July 2017, https://erez.weizmann.ac.il/pls/htmldb/f?p=101:58:::NO:RP:P58_CODE,P58_FILE:5 393,Y [Google Scholar]
  5. S Farrell, et al, Novel deep learning methods for track reconstruction, https://arxiv.org/pdf/1810.06111.pdf [Google Scholar]
  6. S. Farrellet al, (2017) The HEP.TrkX Project: deep neural networks for HL-LHC online and offline tracking. EPJ Web Conf. 150 00003. [CrossRef] [Google Scholar]
  7. D. Guest, K. Cranmer, D Whiteson. Deep Learning and Its Application to LHC Physics, Annu. Rev. Nucl. Part. Sci. 2018. 68, pp 122. [CrossRef] [Google Scholar]
  8. Cho K.et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation //arXiv preprint arXiv:1406.1078, 2014. [Google Scholar]
  9. Redmon J.et al. You only look once: Unified, real-time object detection //Proceedings of the IEEE conference on computer vision and pattern recognition. – 2016. – . 779–788. [Google Scholar]
  10. Liu R.et al. An intriguing failing of convolutional neural networks and the coordconv solution //arXiv preprint arXiv:1807.03247. – 2018. [Google Scholar]
  11. Lin T. Y.et al. Focal loss for dense object detection //arXiv preprint arXiv:1708.02002. – 2017. [Google Scholar]
  12. Powers D., Evaluation: From Precision, Recall and F-Measure to ROC, Informedness, Markedness … Correlation, Journal of Machine Learning Technologies, 2011, 2 (1), pp 37–63. [Google Scholar]
  13. Supercomputer «GOVORUN» [Electronic resource]. - Mode of access: http://hlit.jinr.ru/about_govorun/ [Google Scholar]
  14. François Cholletet al, Keras, 2015, https://github.com/keras-team/keras. [Google Scholar]
  15. Abadi M.et al. Tensorflow: a system for large-scale machine learning //OSDI. - 2016. - . 16. – . 265–283. [Google Scholar]
  16. Google Colaboratory, https://colab.research.google.com [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.