Open Access
Issue |
EPJ Web Conf.
Volume 214, 2019
23rd International Conference on Computing in High Energy and Nuclear Physics (CHEP 2018)
|
|
---|---|---|
Article Number | 06020 | |
Number of page(s) | 8 | |
Section | T6 - Machine learning & analysis | |
DOI | https://doi.org/10.1051/epjconf/201921406020 | |
Published online | 17 September 2019 |
- B.S. Acharyaet al. (Cherenkov Telescope Array Consortium) (2017), 1709.07997 [Google Scholar]
- D. Nieto, A. Brill, B. Kim, T.B. Humensky, f.t. Cherenkov Telescope Array, ArXiv e-prints (2017), 1709.05889 [Google Scholar]
- S. Mangano, C. Delgado, M.I. Bernardos, M. Lallena, J.J. Rodríguez Vázquez, Extracting Gamma-Ray Information from Images with Convolutional Neural Network Methods on Simulated Cherenkov Telescope Array Data, in Artificial Neural Networks in Pattern Recognition, edited by L. Pancioni, F. Schwenker, E. Trentin (Springer International Publishing, Cham, 2018), pp. 243–254, ISBN 978-3-319-99978-4 [CrossRef] [Google Scholar]
- I. Shilon, M. Kraus, M. zBüchele, K. Egberts, T. Fischer, T. Lukas Holch, T. Lohse, U. Schwanke, C. Steppa, S. Funk, ArXiv e-prints (2018), 1803.10698 [Google Scholar]
- J. Cogan, M. Kagan, E. Strauss, A. Schwarztman, Journal of High Energy Physics 2015, 118 (2015), 1407.5675 [Google Scholar]
- J. Cogan, M. Kagan, E. Strauss, A. Schwarztman, Journal of High Energy Physics 2015, 118 (2015) [Google Scholar]
- M. Andrews, M. Paulini, S. Gleyzer, B. Poczos, arXiv e-prints arXiv:1807.11916 (2018), 1807.11916 [Google Scholar]
- Q. Feng, T.T.Y. Lin, VERITAS Collaboration, The analysis of VERITAS muon images using convolutional neural networks, in Astroinformatics, edited by M. Brescia, S.G. Djorgovski, E.D. Feigelson, G. Longo, S. Cavuoti (2017), Vol. 325 of IAU Symposium, pp. 173–179, 1611.09832 [Google Scholar]
- K. Schawinski, C. Zhang, H. Zhang, L. Fowler, G.K. Santhanam, 467, L110 (2017), 1702.00403 [Google Scholar]
- G. Ambrosi, Y. Awane, H. Baba, A. Bamba, M. Barceló, U.B. De Almeida, J. Barrio, O.B. Bigas, J. Boix, L. Brunettiet al., arXiv preprint arXiv:1307.4565 (2013) [Google Scholar]
- J. Glicenstein, M. Barcelo, J. Barrio, O. Blanch, J. Boix, J. Bolmont, C. Boutonnet, S. Cazaux, E. Chabanne, C. Championet al., ArXiv e-prints (2013), 1307.4545 [Google Scholar]
- R. van de Geijn, K. Goto, BLAS (Basic Linear Algebra Subprograms) (Springer US, Boston, MA, 2011), pp. 157–164, ISBN 978-0-387-09766-4, https://doi.org/10.1007/978-0-387-09766-4_84 [Google Scholar]
- A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. De Vito, Z. Lin, A. Desmaison, L. Antiga, A. Lerer, Automatic differentiation in PyTorch, in NIPS-W (2017) [Google Scholar]
- Ignite, https://github.com/pytorch/ignite (2017–2018) [Google Scholar]
- GoogleInc., Tensorboard, https://github.com/tensorflow/tensorboard (2015–2018) [Google Scholar]
- Tensorboardx, https://github.com/lanpa/tensorboardX (2017–2018) [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.