Open Access
Issue
EPJ Web Conf.
Volume 222, 2019
The XXIV International Workshop “High Energy Physics and Quantum Field Theory” (QFTHEP 2019)
Article Number 02016
Number of page(s) 6
Section Experiment / Detectors / Data analysis
DOI https://doi.org/10.1051/epjconf/201922202016
Published online 19 November 2019
  1. E. Boos and L. Dudko, “Optimized neural networks to search for Higgs boson production at the Tevatron,” Nucl. Instrum. Meth. A 502, 486 (2003) doi: 10.1016/S0168-9002(03)00477-7 [hepph/0302088]. [CrossRef] [Google Scholar]
  2. Boos E.E., Bunichev V.E., Dudko L.V. et al. Phys. Atom. Nuclei (2008) 71 388. https://doi.org/10.1134/S1063778808020191 “Method of “optimum observables” and implementation of neural networks in physics investigations” [CrossRef] [Google Scholar]
  3. P. Baldi, P. Sadowski and D. Whiteson, “Searching for Exotic Particles in High-Energy Physics with Deep Learning,” Nature Commun. 5, 4308 (2014) doi: 10.1038/ncomms5308 [arXiv:1402.4735 [hep-ph]]. [CrossRef] [PubMed] [Google Scholar]
  4. Hilbert David (1902). “Mathematical problems”. Bulletin of the American Mathematical Society. 8: 461–462.; D. Hilbert, “Über die Gleichung neunten Grades“, Math. Ann. 97 (1927), 243–250; https://en.wikipedia.org/wiki/Hilbert%27s_thirteenth_problem [Google Scholar]
  5. Andrey Kolmogorov, “On the representation of continuous functions of several variables by superpositions of continuous functions of a smaller number of variables”, Proceedings of the USSR Academy of Sciences, 108 (1956), pp. 179–182; English translation: Amer. Math. Soc. Transl., 17 (1961), pp. 369–373.; Vladimir Arnold, “On functions of three variables”, Proceedings of the USSR Academy of Sciences, 114 (1957), pp. 679–681; English translation: Amer. Math. Soc. Transl., 28 (1963), pp. 51–54. [Google Scholar]
  6. B. Abbott et al. [D0 Collaboration], “Neural networks for analysis of top quark production,” hepex/9907041. [Google Scholar]
  7. M. Abadi et al., “TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems,” arXiv:1603.04467 [cs.DC]. Software available from tensorflow.org. [Google Scholar]
  8. Chollet, François and others, “Keras” 2015 Software available from keras.io [Google Scholar]
  9. RadfordM.N., “Bayesian learning for neural networks”, 1994, Dept. of Statistics and Dept. of Computer Science, University of Toronto”, ISBN 0-387-94724-8, http://www.cs.utoronto.ca/~radford/bnn.book.html [Google Scholar]
  10. Radford M. Neal, “Software for flexible Bayesian modeling and Markov chain sampling”, 2004, Dept. of Statistics and Dept. of Computer Science, University of Toronto, 2004-11-10, http://www.cs.toronto.edu/~radford/fbm.software.html [Google Scholar]
  11. V. Khachatryan et al. [CMS Collaboration], “Search for anomalous Wtb couplings and flavourchanging neutral currents in t-channel single top quark production in pp collisions at √s = 7 and 8 TeV,” JHEP 1702, 028 (2017) doi:10.1007/JHEP02(2017)028 [arXiv:1610.03545 [hep-ex]]. [CrossRef] [Google Scholar]
  12. E. Boos et al. [CompHEP Collaboration], Nucl. Instrum. Meth. A 534, 250 (2004) doi:10.1016/j.nima.2004.07.096 [hep-ph/0403113]. [CrossRef] [Google Scholar]
  13. E. Boos, V. Bunichev, L. Dudko and M. Perfilov, “Interference between W′ and W in single-top quark production processes,” Phys. Lett. B 655, 245 (2007) doi:0.1016/j.physletb.2007.03.064 [hep-ph/0610080]. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.