Open Access
EPJ Web Conf.
Volume 222, 2019
The XXIV International Workshop “High Energy Physics and Quantum Field Theory” (QFTHEP 2019)
Article Number 04007
Number of page(s) 9
Section Physics Beyond the SM
Published online 19 November 2019
  1. F. Déliot, N. Hadley, S. Parke and T. Schwarz, “Properties of the Top Quark, ”Ann. Rev. Nucl. Part. Sci. 64, 363 (2014). [CrossRef] [Google Scholar]
  2. E. Boos, O. Brandt, D. Denisov, S. Denisov and P. Grannis, “The top quark(20 years after its discovery), ”Phys. Usp. 58, no.12, 1133 (2015) [Usp. Fiz. Nauk 185, no.12, 1241 (2015)] [CrossRef] [Google Scholar]
  3. C.E. Gerber and C. Vellidis, “Review of Tevatron results: Top quark physics,” Int. J. Mod. Phys. A 30, no.06, 1541005 (2015). [Google Scholar]
  4. W. Bernreuther and P. Uwer, “Top-quark physics at colliders,” Nucl. Part. Phys. Proc. 261–262, 414 (2015). [CrossRef] [Google Scholar]
  5. M. Cristinziani and M. Mulders, “Top-quark physics at the Large Hadron Collider,” J. Phys. G 44 (2017) no.6, 063001 [CrossRef] [Google Scholar]
  6. U. Husemann, “Top-Quark Physics: Status and Prospects,” Prog. Part. Nucl. Phys. 95 (2017) 48 [Google Scholar]
  7. W. Buchmuller, D. Wyler, “Effective Lagrangian analysis of new interactins and flavour conservation,” Nucl. Phys. B268, 621 (1986) [CrossRef] [Google Scholar]
  8. B. Grzadkowski, M. Iskrzynski, M. Misiak and J. Rosiek, “Dimension-Six Terms in the Standard Model Lagrangian, ”JHEP 1010, 085 (2010) [CrossRef] [Google Scholar]
  9. J.A. Aguilar-Saavedra et al., “Interpreting top-quark LHC measurements in the standard-model effective field theory,” arxiv:1802.07237 [hep-ph]. [Google Scholar]
  10. K. Whisnant, J.M. Yang, B.L. Young and X. Zhang, “Dimension-six CP conserving operators of the third family quarks and their effects on collider observables,” Phys. Rev. D 56, 467 (1997) [Google Scholar]
  11. E. Boos, M. Dubinin, M. Sachwitz and H.J. Schreiber, “Probe of the W t b coupling in t anti-t pair production at linear colliders,” Eur. Phys. J. C 16 (2000) 269 [CrossRef] [EDP Sciences] [Google Scholar]
  12. J.A. Aguilar-Saavedra, “Single top quark production at LHC with anomalous Wtb couplings,” Nucl. Phys. B 804, 160 (2008) [Google Scholar]
  13. J.L. Birman, F. Déliot, M.C.N. Fiolhais, A. Onofre and C.M. Pease, “New limits on anomalous contributions to the Wtb vertex,” Phys. Rev. D 93, no.i, 113021 (2016) [Google Scholar]
  14. G.L. Kane, G.A. Ladinsky and C.P. Yuan, “Using the Top Quark for Testing Standard Model Polarization and CP Predictions,” Phys. Rev. D 45, 124 (1992). [Google Scholar]
  15. V. Khachatryan et al. [CMS Collaboration], “Search for anomalous Wtb couplings and flavourchanging neutral currents in t-channel single top quark production in pp collisions at √s = 7 and 8 TeV,” JHEP 1702, 028 (2017) [CrossRef] [Google Scholar]
  16. M. Jezabek and J.H. Kuhn, “V-A tests through leptons from polarized top quarks,” Phys. Lett. B 329, 317 (1994) [Google Scholar]
  17. M. Jezabek, “Top quark physics,” Nucl. Phys. Proc. Suppl. 37B, no.2, 197 (1994) [CrossRef] [Google Scholar]
  18. G. Mahlon and S.J. Parke, “Improved spin basis for angular correlation studies in single top quark production at the Tevatron,” Phys. Rev. D 55, 7249 (1997) [Google Scholar]
  19. G. Mahlon and S.J. Parke, “Single top quark production at the LHC: Understanding spin,” Phys. Lett. B 476, 323 (2000) [Google Scholar]
  20. E. Boos and V. Bunichev, “Symbolic expressions for fully differential single top quark production cross section and decay width of polarized top quark in presence of anomalous Wtb couplings,” arxiv:1910.00710 [hep-ph]. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.