Open Access
Issue
EPJ Web Conf.
Volume 224, 2019
IV International Conference “Modeling of Nonlinear Processes and Systems” (MNPS-2019)
Article Number 04011
Number of page(s) 4
Section Machine Learning, Artificial Intelligence and High-Performance Computing
DOI https://doi.org/10.1051/epjconf/201922404011
Published online 09 December 2019
  1. C. Lynch, Nature 455, 28-29 (2008) doi: 10.1038/455028a [Google Scholar]
  2. E.F. Codd, Commun. ACM 13(6), 377-387 (1970), doi: 10.1145/362384.362685 [Google Scholar]
  3. C. Pentzold, C. Brantner, L. Fölsche 21(1), 139-167 (2019), doi: 10.1177/1461444818791326 [Google Scholar]
  4. K.S. Juchinson, J. Higher School Econ. 1, 216-245 (2017), doi: 10.17323/2072-8166.2017.1.216.245 [in Russian] [Google Scholar]
  5. O.Y. Denisova, A.E. Mukhutdinov, Bull. Kazan Tech. Univ. 18(4), 226-230 (2015), URL: https://cyberleninka.ru/article/n/bolshie-dannye-eto-ne-tolko-razmer-dannyh [in Russian] [Google Scholar]
  6. P.D. Ivanov, V.Zh. Vampilova, Engineering J.: Sci. Innov. 8(32), (2014), doi: 10.18698/2308-6033-2014-8-1228 [in Russian] [Google Scholar]
  7. S.R. Qureshit, A. Gupta, CSIBIG, 1-6 (2014), doi: 10.1109/CSIBIG.2014.7056933 [Google Scholar]
  8. S. Sagiroglu, D. Sinanc, In : Int. Conf. Collab. Tech. Syst., 42-47 (2013), doi: 10.1109/CTS.2013.6567202 [Google Scholar]
  9. S. Madden, IEEE Internet Comp. 16(3), 4-6 (2012), doi: 10.1109/MIC.2012.50 [CrossRef] [Google Scholar]
  10. M. Chen, S. Mao, Y. Liu, Mobile Netw. Appl. 19, 171-209 (2014), doi: 10.1007/s11036-013-0489-0 [CrossRef] [Google Scholar]
  11. X. Wu, X. Zhu, G. Wu, W. Ding, IEEE Trans. Knowledge Data Engineering 26(1), 97-107 (2014), doi: 10.1109/TKDE.2013.109 [CrossRef] [Google Scholar]
  12. E.F. Codd, E.S. Lowry, E. McDonough, C.A. Scalzi, Commun. ACM 2(11), 13-17 (1959), doi: 10.1145/368481.368502 [Google Scholar]
  13. E.F. Codd, Commun. ACM 3(6), 347-350 (1960), doi:10.1145/367297.367317 [Google Scholar]
  14. E.F. Codd, Commun. ACM 3(7), 413-418 (1960), doi: 10.1145/367349.367356 [Google Scholar]
  15. E.F. Codd, Commun. ACM 6(3), 40-42 (1974), doi: 10.1145/983076.983079 [Google Scholar]
  16. E.F. Codd, IEEE Softw. 5(4), 4-6 (1988) [Google Scholar]
  17. E.F. Codd, C. J. Date, In: Proc. of the 1974 ACM SIGFIDET (Now SIGMOD) Workshop on Data Description, Access and Control: Data Models: Data-structure-set Versus Relational, 11-41 (ACM 1975), doi: 10.1145/800297.811529 [Google Scholar]
  18. C.J. Date, E.F. Codd, In: Proc. ACM SIGFIDET (Now SIGMOD) Workshop on Data Description, Access and Control: Data Models: Data-structure-set Versus Relational, 83-113 (ACM 1975), doi: 10.1145/800297.811532 [Google Scholar]
  19. E.F. Codd, SIGPLAN Not. 16(1), 112-114 (1980), doi: 10.1145/960124.806891 [CrossRef] [Google Scholar]
  20. E.F. Codd, In: Proc. 2nd Int. Conf. Data Engineering, 720-729 (IEEE Computer Society 1986) [Google Scholar]
  21. E.F. Codd, Commun. ACM 25(2), 109-117 (1982), doi: 10.1145/358396.358400 [Google Scholar]
  22. E.F. Codd, SIGART Bull. 61, 31-32 (1977), doi: 10.1145/1045283.1045298 [CrossRef] [Google Scholar]
  23. E.F. Codd, In: Proc. ACM SIGMOD, 161 (ACM 1979), doi: 10.1145/582095.582122 [Google Scholar]
  24. E.F. Codd, SIGMOD Rec. 15(4), 53 (1986b), doi: 10.1145/16301.16303 [Google Scholar]
  25. E.F. Codd, SIGMOD Rec. 16(1), 42-50 (1987), doi: 10.1145/24820.24823 [Google Scholar]
  26. J. Herb, A.B. Nadykto, K.M. Nazarenko, N.A. Korobov, F. Yu, Comp. Theor. Chem. 1133, 40-46 (2018), doi: 10.1016/j.comptc.2018.04.012 [CrossRef] [Google Scholar]
  27. O. V. Zolotov, M. A. Knyazeva, Yu. V. Romanovskaya, Russian J. Phys. Chem. B 13, 681-684 (2019), doi: 10.1134/S1990793119040146 [CrossRef] [Google Scholar]
  28. V. Voronin, M. Pismenskova, A. Zelensky, Y. Cen, A. Nadykto, K. Egiazarian, In: Proc. SPIE Counterterrorism, Crime Fighting, Forensics, and Surveillance Technologies II 10802, 204-211 (SPIE 2018), doi: 10.1117/12.2326801 [Google Scholar]
  29. E.W. Dijkstra, Commun. ACM 11(3), 147-148 (1968), doi: 10.1145/362929.362947 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.