Open Access
EPJ Web Conf.
Volume 225, 2020
ANIMMA 2019 – Advancements in Nuclear Instrumentation Measurement Methods and their Applications
Article Number 01004
Number of page(s) 6
Section Fundamental Physics
Published online 20 January 2020
  1. T. Zemb and P. Lindner, Neutrons, X-rays and light: scattering methods applied to soft condensed matter. North-Holland, 2002. [Google Scholar]
  2. I. Grillo, “Small-angle neutron scattering and applications in soft condensed matter”, Soft matter characterization, pp. 723–782, 2008. [CrossRef] [Google Scholar]
  3. J. Schmidhuber, “Deep learning in neural networks: An overview”, Neural networks, vol. 61, pp. 85–117, 2015. [Google Scholar]
  4. S. Lathuiliére, P. Mesejo, X. Alameda-Pineda, and R. Horaud, “A comprehensive analysis of deep regression”, IEEE transactions on pattern analysis and machine intelligence, 2019. [Google Scholar]
  5. A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolutional neural networks” in Advances in neural information processing systems, 2012, pp. 1097–1105. [Google Scholar]
  6. U. R. Acharya, S. L. Oh, Y. Hagiwara, J. H. Tan, and H. Adeli, “Deep convolutional neural network for the automated detection and diagnosis of seizure using eeg signals”, Computers in biology and medicine, vol. 100, pp. 270–278, 2018. [CrossRef] [PubMed] [Google Scholar]
  7. A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and L. Fei-Fei, “Large-scale video classification with convolutional neural networks” in Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, 2014, pp. 1725–1732. [Google Scholar]
  8. Y. Kim, “Convolutional neural networks for sentence classification” arXiv preprint arXiv:1408.5882, 2014. [Google Scholar]
  9. A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Advances in neural information processing systems” Curran Associates, Inc, pp. 1097–1105 2012. [Google Scholar]
  10. H. Tang, A. M. Scaife, and J. Leahy, “Transfer learning for radio galaxy classification”, arXiv preprint arXiv:1903.11921, 2019. [Google Scholar]
  11. S. Khan, N. Islam, Z. Jan, I. U. Din, and J. J. C. Rodrigues, “A novel deep learning based framework for the detection and classification of breast cancer using transfer learning”, Pattern Recognition Letters, 2019. [PubMed] [Google Scholar]
  12. A. Kaya, A. S. Keceli, C. Catal, H. Y. Yalic, H. Temucin, and B. Tekinerdogan, “Analysis of transfer learning for deep neural network based plant classification models”, Computers and Electronics in Agriculture, vol. 158, pp. 20–29, 2019. [Google Scholar]
  13. “Grasp”,, institut Laue-Langevin. [Google Scholar]
  14. C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking the inception architecture for computer vision”, in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 2818–2826. [Google Scholar]
  15. C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2015, pp. 1–9. [Google Scholar]
  16. K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition”, arXiv preprint arXiv:1409.1556, 2014. [Google Scholar]
  17. M. Talo, U. B. Baloglu, Ö. Yıldırım, and U. R. Acharya, “Application of deep transfer learning for automated brain abnormality classificationusing mr images”, Cognitive Systems Research, vol. 54, pp. 176–188, 2019. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.