Open Access
Issue
EPJ Web Conf.
Volume 225, 2020
ANIMMA 2019 – Advancements in Nuclear Instrumentation Measurement Methods and their Applications
Article Number 03001
Number of page(s) 5
Section Nuclear Power Reactors Monitoring and Control
DOI https://doi.org/10.1051/epjconf/202022503001
Published online 20 January 2020
  1. J.V. Pearce, “Extra points for thermometry”, Nat. Phys. Vol. 13, January 2017, p. 104 [Google Scholar]
  2. M.J. Kelly, W.W. Johnston and C.D. Baumann, “The Effects of Nuclear Radiation on Thermocouples”, in Temperature: Its Measurement and Control in Science and Industry (TMCSI), Vol. 3 part 2, pp. 265–269, ed. Herzfeld, Reinhold Publishing Corp, NY, 1962 [Google Scholar]
  3. W.E. Browning and C.E. Miller, Calculated Radiation Induced Changes inthermocouple Composition, Temperature: Its Measurement and Control inScience and Industry (TMCSI), Vol. 3 part 2, pp. 271–276, ed. Herzfeld, Reinhold Publishing Corp, NY, 1962 [Google Scholar]
  4. H.M. Hashemian and Jun Jiang, “Nuclear Plant Temperature Instrumentation”, Nuclear Engineering and Design 239, 3132–3141 (2009) [CrossRef] [Google Scholar]
  5. J.L. Rempe, D.L. Knudson, K.G. Condie, S. Curtis Wilkins, “Evaluationof Specialized Thermocouples for High-Temperature In-Pile Testing. Proceedings of ICAPP ’06 Reno, nV USA, June 4–8, 2006, paper 6086 [Google Scholar]
  6. D.R. White, R. Galleano, A. Actis, H. Brixy, M. De Groot, J. Dubbeldam, A.L. Reesink, F. Edler, H. Sakurai, R.L. Shepard, J.C. Gallop, “The status of Johnson noise thermometry”, Metrologia 33, 325–335 (1996) [Google Scholar]
  7. J.B. Johnson, Thermal agitation of electricity in conductors. Nature 119, 50–51 (1927) [Google Scholar]
  8. M.R. Moldover, W.L. Tew, H.W. Yoon, “Advances in thermometry”, Nat. Phys., 12, 7–11 (2016) [Google Scholar]
  9. S.P. Benz, A. Pollarolo, J. Qu, H. Rogalla, C. Urano, W.L. Tew, P.D. Dresselhaus, D.R. White, “An electronic measurement of the Boltzmannconstant”, Metrologia, 48, 142 (2011) [Google Scholar]
  10. J. Qu, S.P. Benz, K. Coakley, H. Rogalla, W.L. Tew, R. White, K. Zhou, Z. Zhou, “An improved electronic determination of the Boltzmann constant by Johnson noise thermometry”, Metrologia, 54, 549 (2017) [Google Scholar]
  11. M. de Podesta, Rethinking the kelvin, Nat. Phys. 12, 104 (2016) [Google Scholar]
  12. G. Machin, The kelvin redefined, Meas. Sci. Technol. 29 022001 (2018) [Google Scholar]
  13. H. Brixy, R. Hecker, J. Oehmen, “Temperature measurements in the high-temperature range (1000 – 2000 °C) by means of noise thermometry”, High Temperature High Pressure, 23, 625–631, 1991 [Google Scholar]
  14. Roger A. Kisner et al. 2005. Development of a Johnson NoiseThermometer for Nuclear Power Use, Final Report of the InternationalNuclear Energy Research Initiative subtask 2.2: Development ofEnhanced Reactor Operation Strategy Through Improved Sensing andControl at Nuclear Power Plants [Google Scholar]
  15. H. Brixy, R. Hecker, J. Oehmen, Temperature measurements in the high-temperature range (1000 – 2000 °C) by means of noise thermometry, HighTemperature High Pressure, 23, 625–631, 1991 [Google Scholar]
  16. M. Giot, L. Vermeeren, A. Lyoussi, C. Reynard-Carette, C. Lhuillier, P. Mégret, F. Deconinck, B.S. Gonçalves, “Nuclear instrumentation andmeasurement: a review based on the ANIMMA conferences”, EPJ NuclearSci. Technol. 3, 33 (2017) [CrossRef] [EDP Sciences] [Google Scholar]
  17. J.V. Pearce, A. Greenen, P. Bramley, D. Cruickshank, “Towards apractical Johnson noise thermometer for long-term measurements in harsh environments”, proc. 2015 4th International Conference on Advancements inNuclear Instrumentation Measurement Methods and their Applications (ANIMMA) DOI: 10.1109/ANIMMA.2015.7465506 (2016) [Google Scholar]
  18. P. Bramley, D. Cruickshank, J.V. Pearce, “The development of apractical, drift-free, Johnson noise thermometer for industrial applications”, Int. J. Thermophys. 38, 25 (2017) [Google Scholar]
  19. H. Nyquist, “Thermal Agitation of Electric Charge in Conductors”, Phys. Rev. 32, 110–113 (1928) [Google Scholar]
  20. S.P. Benz, J.M. Martinis, S.W. Nam, W.L. Tew, D.R. White, “A New Approach to Johnson Noise Thermometry using a Josephson QuantizedVoltage Source for Calibration”, Proceedings of TEMPMEKO 2001: 8thInternational Symposium on Temperature and Thermal Measurements inIndustry and Science, 19–21 June 2001, Berlin, Germany [Google Scholar]
  21. D.R. White, S.P. Benz, “Constraints on a synthetic-noise source forJohnson noise thermometry”, Metrologia 45, 93–101 (2008) [Google Scholar]
  22. S. O. Rice, “Mathematical Analysis of Random Noise”, Bell Syst. Tech.J., 23, 282–332 (1944) [Google Scholar]
  23. S.O. Rice, “Mathematical analysis of random noise”, Bell Syst. Tech. J. 24, 46–156 (1945) [CrossRef] [MathSciNet] [Google Scholar]
  24. D.R. White et al., “Measurement time and statistics for a noise thermometer with a synthetic-noise reference”, Metrologia 45, 395 (2008) [Google Scholar]
  25. D.R. White and J.-F. Qu, “Frequency-response mismatch effects inJohnson noise thermometry”, Metrologia 55(1), 38 (2018) [Google Scholar]
  26. S.W. Nam et al., “Johnson noise thermometry measurements using a quantized voltage noise source for calibration”, IEEE Trans. Instrum. Meas. 52, 550–554 (2003) [Google Scholar]
  27. https://www.ipo.gov.uk/p-ipsum/Case/PublicationNumber/GB2545176 [Google Scholar]
  28. EN 61000-4-3: Electromagnetic compatibility (EMC) – Part 4-3: Testing and measurement techniques – Radiated, radio-frequency, electromagneticfield immunity test [Google Scholar]
  29. EN 55011: Industrial, scientific and medical equipment — Radio-frequency disturbance characteristics — Limits and methods of measurement [Google Scholar]
  30. ISO 16290:2013, Space systems – Definition of the Technology ReadinessLevels (TRLs) and their criteria of assessment [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.