Open Access
Issue
EPJ Web Conf.
Volume 225, 2020
ANIMMA 2019 – Advancements in Nuclear Instrumentation Measurement Methods and their Applications
Article Number 07003
Number of page(s) 6
Section Safeguards, Homeland Security
DOI https://doi.org/10.1051/epjconf/202022507003
Published online 20 January 2020
  1. IAEA, “Nuclear forensics support,” International Atomic Energy Agency, Tech. Rep., 2006. [Google Scholar]
  2. M.J. Kristo, A.M. Gaffney, N. Marks, K. Knight, W.S. Cassata, and I.D. Hutcheon, “Nuclear forensic science: Analysis of nuclear material out of regulatory control,” Annual Review of Earth and Planetary Sciences, vol. 44, no. 1, pp. 555–579, 2016. [Google Scholar]
  3. E. Keegan, S. Richter, I. Kelly, H. Wong, P. Gadd, H. Kuehn, and A. Alonso-Munoz, “The provenance of Australian uranium ore concentrates by elemental and isotopic analysis,” Applied Geochemistry, 23, no. 4, pp. 765 – 777, 2008. [CrossRef] [Google Scholar]
  4. G.A. Brennecka, L.E. Borg, I.D. Hutcheon, M.A. Sharp, and A.D. Anbar, “Natural variations in uranium isotope ratios of uranium ore concentrates: Understanding the 238U/235U fractionation mechanism,” Earth and Planetary Science Letters, 291, 1, pp. 228 – 233, 2010. [Google Scholar]
  5. T. L. Spano, A. Simonetti, E. Balboni, C. Dorais, and P.C. Burns, “Trace element and U isotope analysis of uraninite and ore concentrate: Applications for nuclear forensic investigations,” Applied Geochemistry, 84, pp. 277 – 285, 2017. [CrossRef] [Google Scholar]
  6. Z. Varga, M. Wallenius, K. Mayer, E. Keegan, and S. Millet, “Application of lead and strontium isotope ratio measurements for the origin assessment of uraniumore concentrates,” Analytical Chemistry, 81, 20, pp. 8327–8334, 2009. [CrossRef] [PubMed] [Google Scholar]
  7. J. Švedkauskaite LeGore, K. Mayer, S. Millet, A. Nicholl, G. Rasmussen, and D. Baltrunas, “Investigation of the isotopic composition of lead and of trace elements concentrations in naturaluranium materials as a signature in nuclear forensics,” Radiochimica Acta, 95, 10, pp. 601–605, 2007. [Google Scholar]
  8. J. Krajkó, Z. Varga, E. Yalcintas, M. Wallenius, and K. Mayer, “Application of neodymium isotope ratio measurements for the origin assessment of uranium ore concentrates,” Talanta, 129, pp. 499 – 504, 2014. [CrossRef] [PubMed] [Google Scholar]
  9. “Nuclear forensic analysis of an unknown uranium ore concentrate sample seized in a criminal investigation in Australia,” Forensic Science International, 240, pp. 111 – 121, 2014. [CrossRef] [PubMed] [Google Scholar]
  10. Z. Varga, M. Wallenius, K. Mayer, and E. Hrnecek, “Alternative method for the production date determination of impure uranium ore concentrate samples,” Journal of Radioanalytical and Nuclear Chemistry, 290, 2, pp. 485–492, Nov 2011. [Google Scholar]
  11. A.K. Kennedy, D.A. Bostick, C.R. Hexel, R.R. Smith, and J.M. Giaquinto, “Non-volatile organic analysis of uranium ore concentrates,” Journal of Radioanalytical and Nuclear Chemistry, 296, 2, pp. 817–821, May 2013. [Google Scholar]
  12. D.M.L. Ho, “Study on the applicability of structural and morphological parameters on selected uranium compounds for nuclear forensic purposes,” Ph.D.dissertation, 2015. [Google Scholar]
  13. L. Fongaro, D.M.L. Ho, K. Kvaal, K. Mayer, and V.V. Rondinella, “Application of the angle measure technique as image texture analysis method for the identification of uranium ore concentrate samples: New perspective in nuclear forensics,” Talanta, 152, pp. 463 – 474, 2016. [CrossRef] [PubMed] [Google Scholar]
  14. J. Schanda, Colorimetry: understanding the CIE system. John Wiley & Sons, 2007. [Google Scholar]
  15. C.A. Schneider, W.S. Rasband, and K.W. Eliceiri, “Nih image to imagej: 25 years of image analysis,” Nature methods, 9, 7, p. 671, 2012. [CrossRef] [PubMed] [Google Scholar]
  16. J.C. Russ, The image processing handbook, 3rd ed. CRC press, 1999, ch. 4. [Google Scholar]
  17. R. Andrle, “The angle measure technique: A new method for characterizing the complexity of geomorphic lines,” Mathematical Geology, 26, 1, pp. 83–97, Jan 1994. [Google Scholar]
  18. J. Huang and K.H. Esbensen, “Applications of Angle Measure Technique (AMT) in image analysis: Part I. a new methodology for insitu powder characterization,” Chemometrics and Intelligent Laboratory Systems, 54, 1, pp. 1 – 19, 2000. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0169743900001003 [CrossRef] [Google Scholar]
  19. K.H. Esbensen, K.H. Hjelmen, and K. Kvaal, “The AMT approach in chemometrics-first forays,” Journal of Chemometrics, 10, no. 5–6, pp. 569–590, 1996. [Google Scholar]
  20. W. H¨ardle and L. Simar, Applied multivariate statistical analysis. Springer,2007, vol. 22007. [Google Scholar]
  21. T. Strauss and M.J. von Maltitz, “Generalising wards method for use with manhattan distances,” PloS one, 12, 1, p. e0168288, 2017. [CrossRef] [PubMed] [Google Scholar]
  22. D.J. Denis, Applied univariate, bivariate, and multivariate statistics. John Wiley & Sons, 2015. [Google Scholar]
  23. S.V. Kucheryavski, K. Kvaal, M. Halstensen, P.P. Mortensen, C.K. Dahl, P. Minkkinen, and K.H. Esbensen, “Optimal corrections for digitization and quantification effects in angle measure technique AMT texture analysis,” Journal of Chemometrics: A Journal of the Chemometrics Society, 22, no. 11–12, pp. 722–737, 2008. [Google Scholar]
  24. K.A. Bakeev, Process analytical technology: spectroscopic tools and implementation strategies for the chemicaland pharmaceutical industries. John Wiley & Sons, 2010. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.