Open Access
EPJ Web Conf.
Volume 230, 2020
Italian National Conference on the Physics of Matter (FisMat 2019)
Article Number 00005
Number of page(s) 8
Published online 11 March 2020
  1. J.W.J.L. Wang, F. Lombardi, X. Zhang, C. Anaclet, and P.C. Ivanov. Non-equilibrium critical dynamics of bursts in θ and δ rhythms as fundamental characteristic of sleep and wake micro-architecture. PloS Comput Biol, 15(11):e1007268, 2019. [Google Scholar]
  2. J.M. Beggs, and D. Plenz. Neuronal avalanches in neocortical circuits. J. Neurosci., 23:11167-11177, 2003. [CrossRef] [PubMed] [Google Scholar]
  3. L. de Arcangelis, C. Godano, J.R. Grasso, and E. Lippiello. Statistical physics approach to earthquake occurrence and forecasting. Physics Reports, 628: 1-91, 2016. [Google Scholar]
  4. P. Bak How nature works. Copernicus, New York, 1996. [CrossRef] [Google Scholar]
  5. C. Tang, P. Bak, and K. Wiesenfeld. Self-Organized Criticality: An explanation of 1/f noise. Phys. Rev. Lett., 59 (4), 381-384, 1987. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  6. Pruessner, G. Self-Organised Criticality: Theory, Models and Characterisation. Cambridge University Press, 2012. [CrossRef] [Google Scholar]
  7. C.C. Lo, L.N. Amaral, S. Havlin, P.C. Ivanov, T. Penzel, J.H. Peter, and H.E. Stanley. Dynamics of sleep-wake transitions during sleep. EPL (Euro-physics Letters), 57(5):625, 2002. [CrossRef] [Google Scholar]
  8. C.C. Lo, T. Chou, T. Penzel, T.E. Scammell, R.E. Strecker, H.E. Stanley. and Ivanov, P.C. Common scale-invariant patterns of sleep–wake transitions across mammalian species. Proceedings of the National Academy of Sciences, 101(50):17545-17548, 2004. [CrossRef] [Google Scholar]
  9. L. de Arcangelis, F. Lombardi, H.J. Herrmann. Criticality in the brain. Journal of Statistical Mechanics: Theory and Experiment, 2014:(3), 2014. [CrossRef] [Google Scholar]
  10. D. Chialvo. Emergent complex neural dynamics. Nature Physics, 6, 2010. [Google Scholar]
  11. T. Petermann, T.C. Thiagarajan, M.A. Lebedev, M.A. Nicolelis, D.R. Chialvo, and D. Plenz. Spontaneous cortical activity in awake monkeys composed of neuronal avalanches. Proceedings of the National Academy of Sciences, 106(37):15921-15926, 2009. [CrossRef] [Google Scholar]
  12. M. Steriade, A. Nunez, and F. Amzica. A novel slow (< 1Hz) oscillation of neocortical neurons in vivo: Depolarizing and hyperpolarizing components. J. Neurosci., 13:3252, 1993. [CrossRef] [PubMed] [Google Scholar]
  13. R.E. Brown, R. Basheer, J.T. McKenna, R.E. Strecker, and R.W. McCarley. Control of sleep and wakefulness. Physiol. Rev., 92:1087-1187, 2012. [Google Scholar]
  14. C. von Economo. Sleep as a problem of localization. The Journal of Nervous and Mental Disease, 71:1-5, 1930. [Google Scholar]
  15. F. Bremer. Cerveau "isole" et physiologie du sommeil. Comptes rendus de la Societe de Biologie, 118: 1235-1241, 1935. [Google Scholar]
  16. F. Bremer. L’ activite cerebrale au cours du sommeil et de la narcose. Contribution a l’etude mecanistique du sommeil. Academie royale de medecine de Belgique, 2:68-86, 1937. [Google Scholar]
  17. T.E. Scammell, E. Arrigoni, and J.O. Lipton. Neural circuitry of wakefulness and sleep. Neuron, 93:747-765, 2017. [CrossRef] [PubMed] [Google Scholar]
  18. R. Boyce, S.D. Glasgow, S. Williams, and A. Adamantidis. Causal evidence for the role of rem sleep theta rhythm in contextual memory consolidation. Science, 352:812-816, 2016. [Google Scholar]
  19. F. Lombardi, H.J. Herrmann, C. Perrone-Capano, D. Plenz, and L. de Arcangelis. Balance between excitation and inhibition controls the temporal organization of neuronal avalanches. Phys. Rev. Lett, 108:228703, 2012. [CrossRef] [PubMed] [Google Scholar]
  20. F. Lombardi, H.J. Herrmann, D. Plenz, and L. de Arcangelis. On the temporal organization of neuronal avalanches. Front. Syst. Neurosci, 8:204, 2014. [CrossRef] [PubMed] [Google Scholar]
  21. Corral, A. Long-term clustering, scaling, and universality in the temporal occurrence of earthquakes. Physical Review Letters, 92(10):108501, 2004. [CrossRef] [PubMed] [Google Scholar]
  22. S. Scarpetta, and A. de Candia. Alternation of up and down states at a dynamical phase-transition of a neural network with spatiotemporal attractors. Front. Syst. Neurosci., 8:88, 2014. [CrossRef] [PubMed] [Google Scholar]
  23. G. Boffetta, V. Carbone, P. Giuliani, P. Veltri, and A. Vulpiani. Power laws in solar flares: self-organized criticality or turbulence? Physical review letters, 83 (22):4662, 1999. [Google Scholar]
  24. D.J. Daley, and D. Vere-Jones. An introduction to the theory of point processes. Springer, New York, 1988. [Google Scholar]
  25. A. Corral. Dependence of earthquake recurrence times and independence of magnitudes on seismicity history. Tectonophysics, 424(3-4):177-193, 2006. [Google Scholar]
  26. C.K. Peng, S.V. Buldyrev, S. Havlin, M. Simons, H.E. Stanley, and A.L. Goldberger. Mosaic organization of dna nucleotides. Physical review e, 49(2): 1685, 1994. [Google Scholar]
  27. K. Hu, P.C. Ivanov, Z. Chen, P. Carpena, and H.E. Stanley. Effect of trends on detrended fluctuation analysis. Physical Review E, 64(1):011114, 2001. [Google Scholar]
  28. Z. Chen, P.C. Ivanov, K. Hu, and H.E. Stanley. Effect of nonstationarities on detrended fluctuation analysis. Physical Review E, 65(4):041107, 2002. [Google Scholar]
  29. Z. Chen, K. Hu, P. Carpena, P. Bernaola-Galvan, H.E. Stanley, and P.C. Ivanov. Effect of nonlinear filters on detrended fluctuation analysis. Physical Review E, 71(1):011104, 2005. [Google Scholar]
  30. V. Pasquale, P. Massobrio, L.L. Bologna, M. Chiappalone, and S. Martinoia. Self-organization and neuronal avalanches in networks of dissociated cortical neurons. J.Neurosci., 153:1354-1369, 2008. [CrossRef] [PubMed] [Google Scholar]
  31. K. Linkenkaer-Hansen, V.V. Nikouline, J.M. Palva, and R.J. IImoniemi. Long-range temporal correlations and scaling behavior in human brain oscillations. Journal of Neuroscience, 21(4):1370-1377, 2001. [CrossRef] [Google Scholar]
  32. J.M. Palva, A. Zhigalov, J. Hirvonena, O. Korhonena, K. Linkenkaer-Hansen, and S. Palva. Neuronal long-range temporal correlations and avalanche dynamics are correlated with behavioral scaling laws. Proc. Natl. Acad. Sci. USA, 110(9):3585, 2013. [CrossRef] [Google Scholar]
  33. E. Tagliazucchi, P. Balenzuela, D. Fraiman, and D.R. Chialvo. Criticality in large-scale brain fmri dynamics unveiled by a novel point process analysis. Front. Physio., 3:15, 2012. [CrossRef] [PubMed] [Google Scholar]
  34. O. Shriki, J. Alstott, F. Carver, T. Holroyd, R.N.A. Hanson, M.L. Smith, R. Coppola, E. Bullmore, and D. Plenz. Neuronal avalanches in the resting meg of the human brain. J. Neurosci., 33(16):7079-7090, 2013. [CrossRef] [PubMed] [Google Scholar]
  35. M.S. Blumberg, A.M.H. Seelke, S.B. Lowen, and K. Karlsson. Dynamics of sleep-wake cyclicity in developing rats. Proceedings of the National Academy of Sciences, 102(41):14860, 2005. [CrossRef] [Google Scholar]
  36. C.C. Lo, R.P. Bartsch, and P.C. Ivanov. Asymmetry and basic pathways in sleep-stage transitions. EPL (Europhysics Letters), 102(1):10008, 2013. [CrossRef] [Google Scholar]
  37. Xu, L, Ivanov, P. Ch, Hu, K, Chen, Z, Carbone, A, and Stanley, H.E. Quantifying signals with power-law correlations: A comparative study of detrended fluctuation analysis and detrended moving average techniques. Physical Review E, 71(5):051101, 2005. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.