Open Access
EPJ Web Conf.
Volume 231, 2020
8th International Meeting of Union for Compact Accelerator-Driven Neutron Sources (UCANS-8)
Article Number 05006
Number of page(s) 6
Section Instrumentation
Published online 11 March 2020
  1. I. Anderson et al., Research opportunities with compact accelerator driven sources, Physics Report 654, 1-58 (2016) [CrossRef] [Google Scholar]
  2. Y. Kiyanagi, Neutron Imaging at Compact Accelerator-Driven Neutron Sources in Japan, J. Imaging, 4, 55; doi:10.3390/jimaging4040055 (2018) [Google Scholar]
  3. G. Bayon, Review on use of neutron radiography at Saclay nuclear research center, Proc.3rd World Conference on Neutron Radiography, pp. 439-446 (1996) [Google Scholar]
  4. V. Manzi-Orezzoli et al., Coating Distribution Analysis on Gas Diffusion Layers for Polymer Electrolyte Fuel Cells by Neutron and X-Ray High Resolution Tomography, ACS Omega, ID: ao-2019-01763j.R2 (2019) [Google Scholar]
  5. M. Ščepanskis et al., Assessment of Electromagnetic Stirrer Agitated Liquid Metal Flows by Dynamic Neutron Radiography, Metallurgical and Materials Transactions B ISSN 1073-5615 Volume 48 Number 2 Metall and Material Trans B 48: 1045-1054 DOI 10.1007/s11663-016-0902-8 (2017) [Google Scholar]
  6. M. Siegwart, et al., Selective Visualization of Water in Fuel Cell Gas Diffusion Layers with Neutron Dark-Field Imaging Journal of The Electrochemical Society 166 (2):F149-F157 (2019) [Google Scholar]
  7. M. Makowska, et al., Phase transition mapping by means of neutron imaging in SOFC anode supports during reduction under applied stress, ECS Transactions, 68 (1) 1103-1114 (2015) [Google Scholar]
  8. I. Manke, et al., Characterization of water exchange and two-phase flow in porous gas diffusion materials by H-D contrast neutron radiography, Appl. Phys. Lett. 92, 244101 (2008) [Google Scholar]
  9. M. Strobl, et al., Topical Review: Advances in neutron radiography and tomography, J. Phys. D 42 243001 (2009) [CrossRef] [Google Scholar]
  10. Thomas Knoche et al., In situ visualization of the electrolyte solvent filling process by neutron radiography, Journal of Power Sources 331, 267-276 (2016) [Google Scholar]
  11. Y. Wu et al., Effect of serpentine flow-field design on the water management of polymer electrolyte fuel cells: An in-operando neutron radiography study, Journal of Power Sources 399, 254 (2018) [Google Scholar]
  12. M. Cochet et al., Novel Concept for Evaporative Cooling of Fuel Cells: an Experimental Study Based on Neutron Imaging, Fuel Cells 18, 619 (2018) [Google Scholar]
  13. P. Stahl et al., An Investigation of PEFC Sub-Zero Startup: Influence of Initial Conditions and Residual Water, Fuel Cells 17, 778 (2017) [CrossRef] [Google Scholar]
  14. P. Boillat, E.H. Lehmann, P. Trtik, M. Cochet Neutron imaging of fuel cells? Recent trends and future prospects, Current Opinion in Electrochemistry 5, 3 (2017) [Google Scholar]
  15. M. Strobl, H. Heimonen, S. Schmidt, M. Sales, N. Kardjilov, A. Hilger, I. Manke, T. Shinohara, J. Valsecchi Topical review: Polarisation measurements in neutron imaging J. Physics D 52, 12 (2019) [Google Scholar]
  16. M. Strobl, M. Bulat, K. Habicht, The wavelength frame multiplication chopper system for an ESS test-beamline and corresponding implications for ESS instruments, Nucl. Instr. Meth. A 705, 74–84 (2013) [CrossRef] [Google Scholar]
  17. E. H. Lehmann, D. Ridikas, Status of Neutron Imaging – Activities in a Worldwide Context, Physics Procedia Volume 69, 2015, 10-17 (2015) [Google Scholar]
  18. [Google Scholar]
  19. HBS Project, Conceptual Design Report, FZ Jülich, ISBN 978-3-95806-280-1 (2017) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.