Open Access
EPJ Web Conf.
Volume 232, 2020
Heavy Ion Accelerator Symposium (HIAS 2019)
Article Number 02002
Number of page(s) 10
Section Accelerator Mass Spectrometry
Published online 06 April 2020
  1. The Keeling Curve: [Google Scholar]
  2. S. Arrhenius, On the Influence of Carbonic Acid in the Air upon the Temperature of the Ground, Phil. Mag. J. Sci. Ser. 5, 41, 237 (1896). [CrossRef] [Google Scholar]
  3. P. J. Crutzen and E. F. Stoermer, The Anthropocene, The Global Change Newsletters 41, 17 (2000). [Google Scholar]
  4. P. J. Crutzen, Geology of mankind, Nature 415, 23 (2002). [Google Scholar]
  5. C. N. Waters, J. Zalasiewicz, C. Summerhayes et al., The Anthropocene is functionally and stratigraphically distinct from the Holocene, Science 351, 137 (2016). [Google Scholar]
  6. J. Zalasiewicz, C. N. Waters, P. Wolfe et al., Making the case for a formal Anthropocene Epoch: an analysis of ongoing critiques, Newsletters on Stratigraphy 50(2), 205 (2017). [Google Scholar]
  7. F. Höpfel, W. Platzer, and K. Spindler, eds., Der Mann im Eis, Band 1. Bericht über das Internationale Symposium 1992 in Innsbruck, Veröffentlichungen der Universität Innsbruck 187 (1992) pp 464. [Google Scholar]
  8. B. Fowler, Iceman – Uncovering the Life and Times of a Prehistoric Man found in an Alpine Glacier, Random House, New York (2000) pp 313. [Google Scholar]
  9. W. Müller, H. Fricke, A. N. Halliday et al., Origin and migration of the Alpine Iceman, Science 302, 862 (2003). [Google Scholar]
  10. K. Nicolussi, and G. Patzelt., Discovery of EarlyHolocene wood and peat on the forefield of the Pasterze Glacier, Eastern Alps, Austria, The Holocene 10(2), 191 (2000). [Google Scholar]
  11. A. Hormes, B. U. Müller, and C. Schlüchter, The Alps with little ice: evidence for eight Holocene phases of reduced glacier extent in the Central Swiss Alps, The Holocene 11(3), 255 (2001). [Google Scholar]
  12. K. Nicolussi, M. Kaufmann, G. Patzelt et al., Holcene tree-line variability in the Kauner Valley, Central Eastern Alps, indicated by dendrochronological analysis of living trees and subfossil logs, Veget. Hist. Archeobot. 14, 221 (2005). [CrossRef] [Google Scholar]
  13. U. E. Joerin, T. F. Stocker, and C. Schlüchter, Multicentury glacier fluctuations in the Swiss Alps during the Holocene, The Holocene 16, 697 (2006) [Google Scholar]
  14. M. Grosjean, P. J. Suter, M. Trachsel et al., Ice-born prehistoric finds in the Swiss Alps reflect Holocene glacier fluctuations, J. Quat. Sci. 22(3), 2003 (2007). [Google Scholar]
  15. U. E. Joerin, K. Nicolussi, A. Fischer et al., Holocene optimum events inferred from subglacial sediments at Tschierva Glacier, Eastern Alps, Quat. Sci. Rev. 27(3-4), 337 (2008). [Google Scholar]
  16. J. M. Schaefer, G. H. Denton, M. Kaplan et al., High frequency Holocene glacier fluctuations in New Zealand differ from the northern signature, Science 324 (5927), 622 (2009). [Google Scholar]
  17. B. M. Goehring, J. M. Schaefer, C. Schlüchter et al., The Rhone Glacier was smaller than today for most of the Holocene, Geology 39(7), 679 (2011). [Google Scholar]
  18. A. E. Putnam, J. M. Schaefer, G. H. Denton et al., Regional climate control of glaciers in New Zealand and Europe during the pre-industrial Holocene, Nature Geoscience 5, 628 (2012). [Google Scholar]
  19. I. Schimmelpfenning, J. M. Schaefer, N. Akcar et al., Holocene glacier culmination in the Western Alps and their hemispheric relevance, Geology 40, 891 (2012). [Google Scholar]
  20. I. Schimmelpfenning, J. M. Schaefer, N. Akcar et al., A chronology of Holocene and Little Ice Age glacier culminations of the Steingletscher, Central Alps, Switzerland, based on high-sensitivity beryllium-10 moraine dating, Earth Planet. Sci. Lett. 393, 220 (2014). [Google Scholar]
  21. K. Nicolussi and C. Schlüchter, The 8.2 ka event – calendar-dated glacier response in the Alps, Geology 40(9), 819 (2014). [Google Scholar]
  22. W. Kutschera, G. Patzelt, P. Steier, and E. M. Wild, The Tyrolean Iceman and his glacial environment during The Holocene, Radiocarbon 59/2, 395 (2017). [Google Scholar]
  23. F. Steinhilber, J. Beer, and C. Fröhlich, Total solar irradiance during the Holocene, Geophys. Res. Lett. 36, L19704 (2009). [Google Scholar]
  24. A. Hormes, J. Beer, and C. Schlüchter, A geochronological approach to understand the role of solar activity on Holocene glacier length variability in the Swiss Alps, Swiss Alps Geograph. Annals 88A(4), 2281 (2006). [Google Scholar]
  25. IPCC (Intergovernmental Panel on Climate Change) Special Report on Global Warming of 1.5 oC (2018), [Google Scholar]
  26. S. E. Koonin, Certainties and uncertainties in our energy and climate future, Schrödinger Lecture, Austrian Academy of Sciences Vienna (2018), unpublished. [Google Scholar]
  27. P. J. Crutzen, Albedo enhancement by stratospheric sulfur injections: a contribution to resolve a policy dilemma? Climate Change 77, 211 (2006). [CrossRef] [Google Scholar]
  28. P. Ramond, Murray Gell-Man (1929-2019), Science 364, 1236 (2019). [Google Scholar]
  29. L. Augustin, C. Barbante, P. R. F. Barnes et al., Eight glacial cycles from an Antarctic ice core, Nature 429, 623 (2004). [Google Scholar]
  30. J. Jouzel, V. Masson-Delmotte, O. Cattani et al., Orbital and millennial Antarctic climate variability over the past 800,000 years, Science 317, 793 (2007). [Google Scholar]
  31. J. D. Hays, J. Imbrie, and N. J. Shackleton, Variations in the Earth’s Orbit: Pacemaker of the Ice Ages, Science 194, 1121 (1976). [Google Scholar]
  32. O. Passalacqua, M. Cavitte, O. Gagliardini et al., Brief communication: Candidate sites of 1.5 Myr old ice 37 km southwest of the Dome C summit, East Antarctica, The Cryosphere 12, 2167 (2018). [Google Scholar]
  33. N. B. Karlsson, T. Binder, G. Eagles et al., Glaciological characteristics in the Dome Fuji region and new assessment for “Oldest Ice”, The Cryosphere 12, 2413 (2018). [Google Scholar]
  34. Temperature of Planet Earth, [Google Scholar]
  35. G. L. Foster, D. L. Royer, and D. J. Lunt, Future climate forcing potentially without precedent in the last 420 million years, Nature Comm. 8:14845 (2017). [CrossRef] [Google Scholar]
  36. P. Gabrielli, C. Barbante, G. Bertagna et al., Age of the Mt. Ortles ice cores, the Tyrolean Iceman and glaciation of the highest summit of South Tyrol since the Northern Hemisphere Climatic Optimum, The Cryosphere 10, 2779 (2016). [Google Scholar]
  37. T. M. Jenk, S. Szidat, D. Bolius et al., A novel Radiocarbon dating technique applied to an ice core from the Alps indicating late Pleistocene ages, J. Geophys. Res. 114, D14305 (2009). [Google Scholar]
  38. D. Lal, In situ produced cosmogenic isotopes in terrestrial rocks, Annu. Rev. Earth Planet. Sci. 16, 355 (1988). [Google Scholar]
  39. J. L. Goose, and F. M. Phillips, Terrestrial in situ cosmogenic nuclides: theory and application, Quat. Sci. Rev. 20, 1475 (2001). [Google Scholar]
  40. A. Nesje, J. Bakke, S. O. Dahl et al., Norwegian mountain glaciers in the past, present and future, Glob. Planet. Change 60, 10 (2008). [Google Scholar]
  41. M. Le Roy, K. Nicolussi, P. Deline et al., Calendar dated glacier variations in the western European Alps during the Neoglacial: the Mer de Glace record, Mont Blanc massif, Quat. Sci. Rev. 108, 1 (2015). [Google Scholar]
  42. E. A. Ilyashuk, K. A. Koinig, O. Heiri et al., Holocene temperature variations at a high-altitude site in the Eastern Alps: A chironomid record from Schwarzsee ob Sölden, Austria, Quat. Sci. Rev. 30, 176 (2011). [CrossRef] [PubMed] [Google Scholar]
  43. W. Kutschera, G. Patzelt, E. M. Wild et al., Evidence for early human presence at high altitudes in the Ötztal Alps (Austria/Italy), Radiocarbon 56/3, 923 (2017). [Google Scholar]
  44. A. N. Mackintosh, B. M. Anderson, A. M. Lorrey et al. Regional cooling caused recent New Zealand glacier advances in a period of global warming, Nature Comms. 8, 14202 (2017). [CrossRef] [Google Scholar]
  45. M. Milankovic, Kanon der Erdbestrahlung und seine Anwendung auf das Eiszeitenproblem, Königliche Serbische Akademie, Belgrad (1941), English translation, Canon of Insolation and the Ice-Age Problem, Belgrade (1998) pp 634. [Google Scholar]
  46. A. M. Doughty, A. N. Mackintosh, B. M. Anderson et al., An exercise in glacier length modeling: Interannual climatic variability alone cannot explain Holocene glacier fluctuations in New Zealand, Earth Planet. Sci. Lett. 470, 48 (2017). [Google Scholar]
  47. F. Steinhilber, J. A. Abreu, J. Beer et al., 9,400 years of cosmic radiation and solar activity from ice cores and tree rings, PNAS 109/16, 5967 (2012). [NASA ADS] [CrossRef] [Google Scholar]
  48. J. A. Abreu, J. Beer, F. Steinhilber et al., 10Be in ice cores and 14C in tree rings: separation of production and climate effects, Space Sci. Rev. 176(1), 343 (2013). [Google Scholar]
  49. A. P. Schurer, S. F. B. Tett, and G. C. Hegerl, Small influence of solar variability on climate over the past millennium, Nature Geoscience 7, 104 (2014). [Google Scholar]
  50. C. J. Wu, I. G. Usokin, N. Krivova et al., Solar activity over nine millennia: A consistent multi-proxy reconstruction, Astron. & Astrophys. 615, A93 (2018). [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.