Open Access
EPJ Web Conf.
Volume 236, 2020
JDN 24 - Neutrons and Biology
Article Number 03002
Number of page(s) 10
Section Small-angle Scattering
Published online 01 July 2020
  1. D.I. Svergun, M.H.J. Koch, P.A. Timmins, R.P. May, Small Angle X-ray and Neutron Scattering from Solutions of Biological Macromolecules. I.U.o. Crystallography, Ed., IUCr Monographs on Crystallography (Oxford University Press, Oxford, 2013). [Google Scholar]
  2. C.D. Putnam, M. Hammel, G.L. Hura, J.A. Tainer, X-ray solution scattering (SAXS) combined with crystallography and computation: defining accurate macromolecular structures, conformations and assemblies in solution. Quarterly Reviews of Biophysics 40, 191-285 (2007). [CrossRef] [PubMed] [Google Scholar]
  3. E. Mahieu, F. Gabel, Biological small-angle neutron scattering: recent results and development. Acta Crystallographica Section D 74, 715-726 (2018). [Google Scholar]
  4. F. Gabel, S. Engilberge, J. Pérez, E. Girard, Medical contrast media as possible tools for SAXS contrast variation. IUCrJ 6, 521-525 (2019). [CrossRef] [PubMed] [Google Scholar]
  5. C.M. Jeffries et al., Preparing monodisperse macromolecular samples for successful biological small-angle X-ray and neutron-scattering experiments. Nat Protoc 11, 2122-2153 (2016). [Google Scholar]
  6. M. Haertlein et al., in Methods in Enzymology, Z. Kelman, Ed. (Academic Press, 2016), vol. 566, pp. 113-157. [CrossRef] [PubMed] [Google Scholar]
  7. M. Jasnin, M. Moulin, M. Haertlein, G. Zaccai, M. Tehei, Down to atomic-scale intracellular water dynamics. EMBO Rep 9, 543-547 (2008). [CrossRef] [PubMed] [Google Scholar]
  8. Z. Ibrahim et al., Time-resolved neutron scattering provides new insight into protein substrate processing by a AAA+ unfoldase. Scientific Reports 7, 40948 (2017). [CrossRef] [PubMed] [Google Scholar]
  9. A.L. Goldberg, Protein degradation and protection against misfolded or damaged proteins. Nature 426, 895-899 (2003). [Google Scholar]
  10. E.U. Weber-Ban, B.G. Reid, A.D. Miranker, A.L. Horwich, Global unfolding of a substrate protein by the Hsp100 chaperone ClpA. Nature 401, 90-93 (1999). [Google Scholar]
  11. S. Gottesman, E. Roche, Y. Zhou, R.T. Sauer, The ClpXP and ClpAP proteases degrade proteins with carboxy-terminal peptide tails added by the SsrA-tagging system. Genes & development 12, 1338-1347 (1998). [CrossRef] [PubMed] [Google Scholar]
  12. D. Franke et al., ATSAS 2.8: a comprehensive data analysis suite for small-angle scattering from macromolecular solutions. Journal of Applied Crystallography 50, 1212-1225 (2017). [CrossRef] [PubMed] [Google Scholar]
  13. N. Benaroudj, P. Zwickl, E. Seemüller, W. Baumeister, A.L. Goldberg, ATP hydrolysis by the proteasome regulatory complex PAN serves multiple functions in protein degradation. Molecular Cell 11, 69-78 (2003). [CrossRef] [PubMed] [Google Scholar]
  14. J. Trewhella et al., 2017 publication guidelines for structural modelling of small-angle scattering data from biomolecules in solution: an update. Acta Crystallographica Section D 73, 710-728 (2017). [Google Scholar]
  15. J.C. Brooks-Bartlett et al., Development of tools to automate quantitative analysis of radiation damage in SAXS experiments. Journal of Synchrotron Radiation 24, 63-72 (2017). [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.