Open Access
EPJ Web Conf.
Volume 237, 2020
The 29th International Laser Radar Conference (ILRC 29)
Article Number 02027
Number of page(s) 4
Section Aerosols
Published online 07 July 2020
  1. Indoitu, R., Orlovsky, L., and Orlovsky, N.: Dust storms in Central Asia: Spatial and temporal variations, J. Arid Environ. 85, 62–70, (2012) [CrossRef] [Google Scholar]
  2. Xu, H., Wang, X., and Zhang, X.: Decreased vegetation growth in response to summer drought in Central Asia from 2000 to 2012, Int. J. Appl. Earth Obs. Geoinf. 52, 390–402 (2016) [CrossRef] [Google Scholar]
  3. Lioubimtseva, E. and Henebry, G. M.: Climate and environmental change in arid Central Asia: Impacts, vulnerability, and adaptations, J. Arid Environ. 73, 963–977 (2009) [CrossRef] [Google Scholar]
  4. Shi, Z., Xie, X., Li, X., Yang, L., Xie, X., Lei, J., Sha, Y., Liu, X.: Snow-darkening versus direct radiative effects of mineral dust aerosol on the Indian summer monsoon onset: role of temperature change over dust sources, Atmos. Chem. Phys. 19, 1605–1622 (2019) [CrossRef] [Google Scholar]
  5. Wiggs, G. F. S., O’hara, S. L., Wegerdt, J., Van Der Meer, J., Small, I., Hubbard, R.: The dynamics and characteristics of aeolian dust in dryland Central Asia: possible impacts on human exposure and respiratory health in the Aral Sea basin, Geogr. J. 169, 142–157 (2003) [CrossRef] [Google Scholar]
  6. Hofer, J., Althausen, D., Abdullaev, S. F., Makhmudov, A. N., Nazarov, B. I., Schettler, G., Engelmann, R., Baars, H., Fomba, K. W., Müller, K., Heinold, B., Kandler, K., Ansmann, A.: Long-term profiling of mineral dust and pollution aerosol with multiwavelength polarization Raman lidar at the Central Asian site of Dushanbe, Tajikistan: case studies, Atmos. Chem. Phys. 17, 14 559–14 577 (2017) [CrossRef] [Google Scholar]
  7. Engelmann, R., Kanitz, T., Baars, H., Heese, B., Althausen, D., Skupin, A., Wandinger, U., Komppula, M., Stachlewska, I. S., Amiridis, V., Marinou, E., Mattis, I., Linné, H., Ansmann, A.: The automated multiwavelength Raman polarization and water-vapor lidar PollyXT: the neXT generation, Atmos. Meas. Tech. 9, 1767–1784 (2016) [Google Scholar]
  8. Hofer, J., Althausen, D., Abduallaev, S. F., Nazarov, B. I., Makhmudov, A. N., Baars, H., Engelmann, R., Ansmann, A.: Aerosol layer heights above Tajikistan during the CADEX campaign, Proceedings of the Central Asian Dust Conference (CADUC), Dushanbe, Tajikistan (2019) [Google Scholar]
  9. Hofer, J., Althausen, D., Abdullaev, S. F., Makhmudov, A. N., Nazarov, B. I., Schettler, G., Engelmann, R., Baars, H., Heinold, B., Müller, K., Fomba, K. W.: Central Asian Dust Experiment (CADEX): First Year Lidar Observations, in: Light, Energy and the Environment, EW2A.3, Optical Society of America (2017) [Google Scholar]
  10. Ansmann, A., Riebesell, M. A., and Weitkamp, C.: Measurement of atmospheric aerosol extinction profiles with a Raman lidar, Opt. Lett. 15, 746–748 (1990) [CrossRef] [PubMed] [Google Scholar]
  11. Ansmann, A., Riebesell, M. A., Wandinger, U., Weitkamp, C., Voss, E., Lahmann, W., Michaelis, W.: Combined raman elasticbackscatter LIDAR for vertical profiling of moisture, aerosol extinction, backscatter, and LIDAR ratio, App. Phys. 55, 18–28 (1992) [CrossRef] [Google Scholar]
  12. Ansmann, A., Wandinger, U., Riebesell, M. A., Weitkamp, C., Michaelis, W.: Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter lidar, Appl. Opt. 31, 7113–7131 (1992) [Google Scholar]
  13. Holben, B. N., Eck, T. F., Slutsker, I., Tanré, D., Buis, J. P., Setzer, A., E., V., Reagan, J. A., Kaufman, Y. J., Nakajima, T., Lavenu, F., Jankowiak, I., Smirnov, A.: AERONET A Federated Instrument Network and Data Archive for Aerosol Characterization, Remote Sens. Environ. 66, 1–16 (1998) [Google Scholar]
  14. Abdullaev, S. F., Nazarov, B. I., Salikhov, T. K., Maslov, V. A.: Correlations of surface air temperature and optical thickness of arid aerosol according to AERONET data, Atmos. Ocean. Opt. 25, 428–433 (2012) [Google Scholar]
  15. Stohl, A., Forster, C., Frank, A., Seibert, P., Wotawa, G.: Technical note: The Lagrangian particle dispersion model FLEXPART version 6.2., Atmos. Chem. Phys. 5, 2461–2474 (2005) [CrossRef] [Google Scholar]
  16. Ansmann, A. and Mamouri, R. E.: Estimated desert-dust ice nuclei profiles from polarization lidar: methodology and case studies, Atmos. Chem. Phys. 15, 3463–3477 (2015) [CrossRef] [Google Scholar]
  17. Ansmann, A. and Mamouri, R.-E.: Potential of polarization lidar to provide profiles of CCN- and INP-relevant aerosol parameters, Atmos. Chem. Phys. 16, 5905–5931 (2016) [CrossRef] [Google Scholar]
  18. Mamouri, R.-E. and Ansmann, A.: Potential of polarization/Raman lidar to separate fine dust, coarse dust, maritime, and anthropogenic aerosol profiles, Atmos. Meas. Tech. 10, 3403–3427 (2017) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.