Open Access
Issue
EPJ Web Conf.
Volume 237, 2020
The 29th International Laser Radar Conference (ILRC 29)
Article Number 02033
Number of page(s) 4
Section Aerosols
DOI https://doi.org/10.1051/epjconf/202023702033
Published online 07 July 2020
  1. T. Deshler, et al. A review of global stratospheric aerosol: Measurements, importance, life cycle, and local stratospheric aerosol. Atmos. Res. 90, 223–232 (2008) [Google Scholar]
  2. S. Kremser, et al. Stratospheric aerosol – observations, processes, and impact on climate. Rev. Geophys. 54, 278–335 (2016) [Google Scholar]
  3. S. Solomon, et al. The Persistently Variable “Background” Stratospheric Aerosol Layer and Global Climate Change. Sci, 333, 866–870 (2011) [Google Scholar]
  4. Zuev, V. V, et al. 30-year lidar observations of the stratospheric aerosol layer state over Tomsk (Western Siberia, Russia). Atmos. Chem. Phys. 17, 3067-3081 (2017) [Google Scholar]
  5. S. Khaykin, et al. Variability and evolution of the midlatitude stratospheric aerosol budget from 22 years of ground-based lidar and satellite observations. Atmos. Chem. Phys. 17, 1829-1845 (2017) [Google Scholar]
  6. S. Khaykin, et al. Stratospheric Smoke With Unprecedentedly High Backscatter Observed by Lidars Above Southern France. Geophys. Res. Lett. 45, 1639–1646 (2018) [Google Scholar]
  7. A. Ansmann, et al. Extreme levels of Canadian wildfire smoke in the stratosphere over central Europe on 21–22 August 2017. Atmos. Chem. Phys. 18, 11831–11845 (2018) [Google Scholar]
  8. M. Haarig, et al. Depolarization and lidar ratio at 355, 532, and 1064 nm and microphysical properties of aged tropospheric and stratospheric Canadian wildfire smoke. Atmos. Chem. Phys. 18, 11847-11861 (2018) [Google Scholar]
  9. Q. Hu, et al. Long-range-transported Canadian smoke plumes in the lower stratosphere over northern France. Atmos. Chem. Phys. 19, 1173-1193 (2019) [Google Scholar]
  10. C Jimenez, et al. Polarization lidar: an extended three-signal calibration approach. Atmos. Meas. Tech. 12, 1077-1093 (2019) [Google Scholar]
  11. H. Baars, et al. The unprecedented 2017–2018 stratospheric smoke event: decay phase and aerosol properties observed with the EARLINET. Atmos. Chem. Phys. 19, 15183–15198 (2019) [Google Scholar]
  12. G. Pappalardo, et al. EARLINET: Towards an advanced sustainable European aerosol lidar network. Atmos. Meas. Tech. 7, 2389-2409 (2014) [Google Scholar]
  13. H. Baars, et al. An overview of the first decade of Polly NET: An emerging network of automated Raman-polarization lidars for continuous aerosol profiling. Atmos. Chem. Phys. 16, 5111-5137 (2016) [Google Scholar]
  14. K. Markowicz, et al. Study of aerosol optical properties during long-range transport of biomass burning from Canada to Central Europe in July 2013. J. Aeros. Sci. 101, 156-173 (2016) [Google Scholar]
  15. R. Engelmann, et al. The automated multiwavelength Raman polarization and water-vapor lidar PollyXT: The next generation. Atmos. Meas. Tech. 9, 1767-1784 (2016) [Google Scholar]
  16. I. S. Stachlewska, et al. Raman lidar water vapour profiling over Warsaw, Poland. Atmos. Res. 194, 258-267 (2017) [CrossRef] [Google Scholar]
  17. J. D. Klett. Lidar inversion with variable backscatter/extinction ratios. Appl. Opt. 24, 1638–1643 (1985) [CrossRef] [PubMed] [Google Scholar]
  18. I. S. Stachlewska, et al. Modification of local urban aerosol properties by long-range transport of biomass burning aerosol. Remote Sens. 10, 412 (2018) [CrossRef] [Google Scholar]
  19. D. Wang, et al. Interrelations between surface, boundary layer, and columnar aerosol properties derived in summer and early autumn over a continental urban site in Warsaw, Poland, Atmos. Chem. Phys., 19, 13097–13128 (2019) [CrossRef] [Google Scholar]
  20. I.M. Brooks. Finding boundary layer top: Application of a wavelet covariance transform to lidar backscatter profiles. J. Atmos. Ocean. Tech. 20, 1092-1105 (2003) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.