Open Access
EPJ Web Conf.
Volume 237, 2020
The 29th International Laser Radar Conference (ILRC 29)
Article Number 05001
Number of page(s) 4
Section Lidar Networks
Published online 07 July 2020
  1. National Research Council, 2009: Observing Weather and Climate from the Ground Up: A Nationwide Network of Networks. The National Academies Press, Washington, DC. [Google Scholar]
  2. National Research Council, 2010: When Weather Matters: Science and Service to Meet Critical Societal Needs. The National Academies Press, Washington, DC. [Google Scholar]
  3. National Research Council, 2012: Weather Services for the Nation: Becoming Second to None. The National Academies Press, Washington, DC. [Google Scholar]
  4. Wulfmeyer, V., R. M. Hardesty, D. D. Turner, A. Behrendt, M. P. Cadeddu, P. Di Girolamo, P. Schlssel, J. Van Baelen, and F. Zus, 2015: A review of the remote sensing of lower tropospheric thermodynamic profiles and its indispensable role for the understanding and the simulation of water and energy cycles Rev. Geophys., 53, 819–895. [CrossRef] [Google Scholar]
  5. Nehrir, A. R., Repasky, K. S., Carlsten, J. L., Obland, M. D., and Shaw, J. A., 2009: Water Vapor Profiling Using a Widely Tunable, Amplified Diode-Laser-Based Differential Absorption Lidar (DIAL). Journal of Atmospheric and Oceanic Technology, 26(4), 733–745. [CrossRef] [Google Scholar]
  6. Nehrir, A. R., Repasky, K. S., and Carlsten, J. L., 2011: Eye-Safe Diode-Laser-Based Micropulse Differential Absorption Lidar (DIAL) for Water Vapor Profiling in the Lower Troposphere. Journal of Atmospheric and Oceanic Technology, 28(2), 131– 147. [CrossRef] [Google Scholar]
  7. Nehrir, A. R., Repasky, K. S., and Carlsten, J. L., 2012: Micropulse water vapor differential absorption lidar: transmitter design and performance. Optics express, 20(22), 25137–51. [CrossRef] [PubMed] [Google Scholar]
  8. Spuler, S. M., Repasky, K. S., Morley, B., Moen, D., Hayman, M., and Nehrir, A. R., 2015: Field deployable diode-laser-based differential absorption lidar (DIAL) for profiling water vapor. Atmospheric Measurement Techniques, 8, 1073–1087. [CrossRef] [Google Scholar]
  9. Weckwerth, T. M., K. Weber, D. D. Turner, and S. M. Spuler, 2016: Validation of a Water Vapor Micropulse Differential Absorption Lidar (DIAL). J. Atmospheric and Oceanic Technology, 33, 2353– 2372. [CrossRef] [Google Scholar]
  10. Hayman, M. and S. Spuler, 2017: Demonstration of a diode-laser-based high spectral resolution lidar (HSRL) for quantitative profiling of clouds and aerosols. Optics Express, 24, A1096. [CrossRef] [PubMed] [Google Scholar]
  11. Overton G, 2016: Lidar: Differential absorption lidar demands high-power, narrowband DBR sources Laser Focus World, 52(9), 14–15. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.