Open Access
EPJ Web Conf.
Volume 237, 2020
The 29th International Laser Radar Conference (ILRC 29)
Article Number 05006
Number of page(s) 3
Section Lidar Networks
Published online 07 July 2020
  1. Ciofini, et al.,. "Diffractive optical components for high power laser beam sampling." Journal of Optics A: Pure and Applied Optics 5.3 (2003): 186. [CrossRef] [Google Scholar]
  2. Welton, E.J., J. R. Campbell, J. D. Spinhirne, and V. S. Scott, Global monitoring of clouds and aerosols using a network of micro-pulse lidar systems, Proc. SPIE, 4153, 151-158 (2001) [CrossRef] [Google Scholar]
  3. Campbell, J.R. J.R., D.L. Hlavka, E.J. Welton, C.J. Flynn, D.D. Turner, J.D. Spinhirne, V.S. Scott, and I.H. Hwang. Full-time, Eye-Safe Cloud and Aerosol Lidar Observation at Atmospheric Radiation Measurement Program Sites: Instrument and Data Processing, J. Atmos. Oceanic Technol., 19, 431-442 (2002) [CrossRef] [Google Scholar]
  4. Lolli, S., P. Di Girolamo, Principal Component Analysis Approach to Evaluate Instrument Performances in Developing a Cost-Effective Reliable Instrument Network for Atmospheric Measurements. J. Atmos. Oceanic Technol., 32, 1642–164 (2015) [CrossRef] [Google Scholar]
  5. Lolli, S., Madonna, F., Rosoldi, M., Campbell, J. R., Welton, E. J., Lewis, J. R., Gu, Y., and Pappalardo, G.: Impact of varying lidar measurement and data processing techniques in evaluating cirrus cloud and aerosol direct radiative effects, Atmos. Meas. Tech., 11, 1639-1651 (2018) [CrossRef] [Google Scholar]
  6. Lolli, S., J.R. Campbell, J.R. Lewis, Y. Gu, J.W. Marquis, B.N. Chew, S. Liew, S.V. Salinas, and E.J. Welton: Daytime Top-of-the-Atmosphere Cirrus Cloud Radiative Forcing Properties at Singapore. J. Appl. Meteor. Climatol., 56, 1249–1257 (2017) [CrossRef] [Google Scholar]
  7. Milroy, C, et al. "An assessment of pseudo-operational ground-based light detection and ranging sensors to determine the boundary-layer structure in the coastal atmosphere." Advances in Meteorology 2012 (2012). [Google Scholar]
  8. Lolli, S., Delaval, A., Loth, C., Garnier, A., and Flamant, P. H.: 0.355-micrometer direct detection wind lidar under testing during a field campaign in consideration of ESA's ADM-Aeolus mission, Atmos. Meas. Tech., 6, 3349-3358 (2013) [CrossRef] [Google Scholar]
  9. Lolli, S., Khor, W. Y., Matjafri, M. Z., & Lim, H. S. (2019). Monsoon Season Quantitative Assessment of Biomass Burning Clear-Sky Aerosol Radiative Effect at Surface by Ground-Based Lidar Observations in Pulau Pinang, Malaysia in 2014. Remote Sensing, 11(22), 2660. [CrossRef] [Google Scholar]
  10. Campbell, J.R., C. Ge, J. Wang, E.J. Welton, A. Bucholtz, E.J. Hyer, E.A. Reid, B.N. Chew, S. Liew, S.V. Salinas, S. Lolli, K.C. Kaku, P. Lynch, M. Mahmud, M. Mohamad, and B.N. Holben,: Applying Advanced Ground-Based Remote Sensing in the Southeast Asian Maritime Continent to Characterize Regional Proficiencies in Smoke Transport Modeling. J. Appl. Meteor. Climatol., 55, 3–22 (2016) [CrossRef] [Google Scholar]
  11. Lolli, S., E.J. Welton, and J.R. Campbell, Evaluating Light Rain Drop Size Estimates from Multiwavelength Micropulse Lidar Network Profiling, J. Atmos. Oceanic Tech., 30, 2798-2807 (2013) [CrossRef] [Google Scholar]
  12. Lolli, S., P.D. Girolamo, B. Demoz, X. Li, and E.J. Welton, 2016. Rain evaporation rate estimates from dual-wavelength lidar measurements and intercomparison against a model analytical solution. J. Atmos. Oceanic Tech., DOI: 10.1175/JTECH-D-16-0146.1. [Google Scholar]
  13. Lolli, S.; D’Adderio, L.P.; Campbell, J.R.; Sicard, M.; Welton, E.J.; Binci, A.; Rea, A.; Tokay, A.; Comerón, A.; Barragan, R.; Baldasano, J.M.; Gonzalez, S.; Bech, J.; Afflitto, N.; Lewis, J.R.; Madonna, F. Vertically Resolved Precipitation Intensity Retrieved through a Synergy between the Ground-Based NASA MPLNET Lidar Network Measurements, Surface Disdrometer Datasets and an Analytical Model Solution. Remote Sens., 10, 1102 (2018 [CrossRef] [Google Scholar]
  14. Lolli, S., Vivone, G., Lewis, J. R., Sicard, M., Welton, E. J., Campbell, J. R., ... & Pappalardo, G. (2020). Overview of the New Version 3 NASA Micro-Pulse Lidar Network (MPLNET) Automatic Precipitation Detection Algorithm. Remote Sensing, 12(1), 71. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.