Open Access
Issue
EPJ Web Conf.
Volume 239, 2020
ND 2019: International Conference on Nuclear Data for Science and Technology
Article Number 21001
Number of page(s) 7
Section Nuclear Data in Fusion Application
DOI https://doi.org/10.1051/epjconf/202023921001
Published online 30 September 2020
  1. T. Donne, European roadmap to fusion energy, 30th Symposium on Fusion Technology, September 17-21, 2018, Giardini Naxos, Italy [Google Scholar]
  2. U. Fischer et al, Nuclear Data for Fusion Technology–The European Approach, EPJ Web of Conferences 146, 09003 (2017), https://doi.org/10.1051/epjconf/201714609003 [CrossRef] [Google Scholar]
  3. A. Plompen, The Joint Evaluated Fission and Fusion (JEFF) Nuclear Data Library, this conference [Google Scholar]
  4. A. Konobeyev, U. Fischer, P. Pereslavtsev, S. Simakov, New evaluation of general purpose neutron data for stable W-isotopes up to 200 MeV, this conference [Google Scholar]
  5. A. Koning, D. Rochman, Modern nuclear data evaluation with the TALYS code system, Nucl. Data Sheets 113, 2841 (2012) [Google Scholar]
  6. A.Yu. Konobeyev, et al., Implementation of the geometry dependent hybrid model in TALYS, J. Korean Physical Society 59, 935 (2011) [Google Scholar]
  7. M. Blann, Importance of the nuclear density distribution on pre-equilibrium decay, Phys. Rev. Lett. 28, 757 (1972) [Google Scholar]
  8. A. Konobeyev, U. Fischer, P. Pereslavtsev, A. Koning, M. Blann, Implementation of GDH model in TALYS-1.7 code, KIT Scientific Working Papers 45, 2016, https://doi.org/10.5445/IR/1000052543 [Google Scholar]
  9. A. Koning, TEFAL-1.9: Making nuclear data libraries using TALYS, Nuclear Research and Consultancy Group (NRG), November 2017 [Google Scholar]
  10. D.L. Smith, A Least-squares computational tool kit, ANL/NDM-128, Argonne National Laboratory, 1993 [Google Scholar]
  11. D.L. Smith, A Unified Monte Carlo Approach for to Fast Neutron Cross Section Data Evaluation, ANL/NDM-166, Argonne National Laboratory, 2008 [Google Scholar]
  12. A. Konobeev, U. Fischer, P. Pereslavtsev, Computational Approach for the Evaluation of Nuclear Data Including Covariance Information, J. Korean Physical Society 59, 923 (2011) [Google Scholar]
  13. A. Konobeyev, U. Fischer, P. Pereslavtsev, S. Simakov, Evaluated data files for neutron irradiation of W-182 and W-186 at energies up to 200 MeV, KIT Scientific Working Papers 108, 2019, https://doi.org/10.5445/IR/1000090132 [Google Scholar]
  14. A. Konobeyev, U. Fischer, P. Pereslavtsev, S. Simakov, Evaluated data files for neutron irradiation of W-180 and W-183 at energies up to 200 MeV, KIT Scientific Working Papers 123, 2019, https://doi.org/10.5445/IR/1000096730 [Google Scholar]
  15. H. Leeb, Unified Bayesian Evaluation of Oxygen Based on the Hybrid R-matrix Method, this conference [Google Scholar]
  16. Th. Srdinko, H. Leeb, R-matrix approach at the intersection with the statistical model regime, EPJ Web of Conferences 146, 12030 (2017), https://doi.org/10.1051/epjconf/201714612030 [Google Scholar]
  17. A.J. Koning and D. Rochman, Towards sustainable nuclear energy: Putting nuclear physics to work”, Ann. Nucl. Energy 35, 2024 (2008) [Google Scholar]
  18. G. Schnabel, Interfacing TALYS with A Bayesian Treatment of Inconsistent Data and Model Defects, this conference [Google Scholar]
  19. M. Herman, R. Capote, et al., EMPIRE: Nuclear Reaction Model Code System for Data Evaluation, Nucl. Data Sheets 108, 2655-2715 (2007) [Google Scholar]
  20. D. Rochman, E. Bauge, A. Vasiliev, H. Ferroukhi, et al., Monte Carlo nuclear data adjustment via integral information, Eur. Phys. J. Plus 133, 537 (2018), https://doi.org/10.1140/epjp/i2018-12361-x [Google Scholar]
  21. P. Helgesson, H. Sjöstrand, Treating model defects by fitting smoothly varying model parameters, Ann. of Nucl. Energy 120, 35-47 (2018) https://doi.org/10.1016/j.anucene.2018.05.026 [CrossRef] [Google Scholar]
  22. D.W. Marquardt, An Algorithm for Least-Squares Estimation of Nonlinear Parameters, Journal of the Society for Industrial and Applied Mathematics 11, 431-441 (1963), https://doi.org/10.1137/0111030 [Google Scholar]
  23. P. Batistoni, M. Angelone, L. Petrizzi, M. Pillon, Neutronics benchmark experiment on tungsten, J. Nucl. Mater. 329- 333, 683-686 (2004) [Google Scholar]
  24. J.-Ch. Sublet, L.W. Packer, J. Kopecky, R.A. Forrest, A.J. Koning, D.A. Rochman, The European Activation File: EAF-2010 neutron-induced cross section library, CCFE-R(10)05, Culham Centre, UK, 2010 [Google Scholar]
  25. D. Rochman, A.J. Koning, J.Ch. Sublet, et al., The TENDL library: Hope, reality and future, EPJ Web of Conferences 146, 02006 (2017), https://doi.org/10.1051/epjconf/201714602006 [CrossRef] [Google Scholar]
  26. N. Dzysiuk, A. Koning, D. Rochman and U. Fischer, Improving activation cross sections for fusion applications, Fus. Sci. and Technology 73, 13-24 (2018) https://doi.org/10.1080/15361055.2017.1372682 [Google Scholar]
  27. TENDL-2017 library, https://tendl.web.psi.ch/tendl_2017/tendl2017.html [Google Scholar]
  28. JEFF-3.3 activation sub-library, http://www.oecd-nea.org/dbdata/jeff/jeff33/#neutron [Google Scholar]
  29. M. Fleming, J.-Ch. Sublet, M.R. Gilbert, A. Kon-ing and D. Rochman, TALYS/TENDL verification and validation processes: Outcomes and recommen-dations,EPJ Web of Conferences 146, 02033 (2017), https://doi.org/10.1051/epjconf/201714602033 [Google Scholar]
  30. M.R. Gilbert and J.-Ch. Sublet, Experimental decay-heat simulation-benchmark for 14 MeV neutrons & complex inventory analysis, Nucl. Fusion 59, 086045 (2019) https://doi.org/10.1088/1741-4326/ab278a [CrossRef] [Google Scholar]
  31. M.J. Norgett, M.T. Robinson, I.M. Torrens, A proposed method of calculating displacement dose rates, Nucl. Eng. Des. 33, 50 (1975) [Google Scholar]
  32. Eurofer and SS-316 displacement cross-section, https://www-nds.iaea.org/public/download-endf/DXS/ [Google Scholar]
  33. K. Nordlund et al, Primary Radiation Damage in Materials, Report NEA/NSC/DOC(2015)9, OECD 2015 [Google Scholar]
  34. A Konobeyev, U. Fischer, S.P. Simakov, Atomic displacement cross sections for neutron irradiation of materials from Be to Bi calculated using the arc-dpa model, Nucl. Eng. and Technology 51, 170-175 (2018), https://doi.org/10.1016/j.net.2018.09.001 [CrossRef] [Google Scholar]
  35. JEFF-3.3 dpa sub-library, http://www.oecd-nea.org/dbdata/jeff/jeff33/#dpa [Google Scholar]
  36. P. Sauvan, J. Sanz, F. Ogando, MCUNED - MCNPX Extension for Using light Ion Evaluated Nuclear Data library, NEA Data Bank, Paris, NEA-1859/1 (2013) [Google Scholar]
  37. M. Avrigeanu, V. Avrigeanu, Role of breakup and direct processes in deuteron-induced reactions at low energies, Phys. Rev. C 92, 021601 (2015) [Google Scholar]
  38. M. Avrigeanu, Consistent Assessment of Deuteron Interactions at Low and Medium Energies, this conference [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.