Open Access
EPJ Web Conf.
Volume 244, 2020
Complexity and Disorder Meetings 2018-2019-2020
Article Number 01008
Number of page(s) 5
Published online 15 October 2020
  1. J.-P. Allouche, The zeta-regularized product of odious numbers, Adv. in Appl. Math. (2019) to appear. [Google Scholar]
  2. J.-P. Allouche, H. Cohen, Dirichlet series and curious infinite products, Bull. London Math. Soc. 17, 531–538 (1985). [CrossRef] [Google Scholar]
  3. J.-P. Allouche, M. Mendès France, J. Peyrière, Automatic Dirichlet series, J. Number Theory 81, 359–373 (2000). [Google Scholar]
  4. J. Borwein, D. Bailey, R. Girgensohn, Experimentation in Mathematics: Computational Paths to Discovery (Taylor & Francis, 2004). [CrossRef] [Google Scholar]
  5. I. V. Blagouchine, Three notes on Ser’s and Hasse’s representations for the zeta-function, Integers 18A, Paper §A3 (2018). [Google Scholar]
  6. C. Deninger, On the Γ-factors attached to motives, Invent. Math. 104, 245–261 (1991). [Google Scholar]
  7. U. K. Dutta, S. Sangeeta Pradhan, P. K. Ray, Regularized products over balancing and Lucas-balancing numbers, Indian J. Math. 60, 171–179 (2018). [Google Scholar]
  8. S. Egami, Some curious Dirichlet series, in Analytic number theory and its interactions with other parts of number theory (Kyoto, 1998), Su¯rikaisekikenkyu¯sho Ko¯kyu¯roku 1091 (1999), 172–174. [Google Scholar]
  9. H. W. Gould, Temba Shonhiwa, A catalog of interesting Dirichlet series, Missouri J. Math. Sci. 20, 2–18 (2008). [CrossRef] [Google Scholar]
  10. S. W. Hawking, Zeta function regularization of path integrals in curved spacetime, Comm. Math. Phys. 55, 133–148 (1977). [CrossRef] [MathSciNet] [Google Scholar]
  11. K. Kimoto, M. Wakayama, Remarks on zeta regularized products, Int. Math. Res. Not. 2004, 855–875 (2004). [CrossRef] [Google Scholar]
  12. K. Kimoto, N. Kurokawa, C. Sonoki, M. Wakayama, Some examples of generalized zeta regularized products, Kodai Math. J. 27, 321–335 (2004). [CrossRef] [Google Scholar]
  13. A. R. Kitson, The regularized product of the Fibonacci numbers, Preprint (2006), electronically available at [Google Scholar]
  14. N. Kurokawa, M. Wakayama, A generalization of Lerch’s formula, Czechoslovak Math. J. 54, 941–947 (2004). [CrossRef] [Google Scholar]
  15. N. Kurokawa, M. Wakayama, Generalized zeta regularizations, quantum class number formulas, and Appell’s O-functions, Ramanujan J. 10, 291–303 (2005). [CrossRef] [Google Scholar]
  16. E. Landau, A. Walfisz, Über die Nichtfortsetzbarkeit einiger durch Dirichletsche Reihen definierter Funktionen, Rend. Circ. Mat. Palermo 44, 82–86 (1920). [CrossRef] [Google Scholar]
  17. Y. Mizuno, Generalized Lerch formulas: examples of zeta-regularized products, J. Number Theory 118, 155–171 (2006). [CrossRef] [Google Scholar]
  18. E. Muñoz García, R. Pérez Marco, The product over all primes is 4π2, Comm. Math. Phys. 277, 69–81 (2008). [Google Scholar]
  19. L. Navas, Analytic continuation of the Fibonacci Dirichlet series, Fibonacci Quart. 39, 09–418 (2001). [Google Scholar]
  20. On-Line Encyclopedia of Integer Sequences, founded by N. J. A. Sloane, electronically available at [Google Scholar]
  21. H. Ostmann, Additive Zahlentheorie I, Ergebnisse der Math. u. ihrer Grenzgebiete, Springer, 1956. [Google Scholar]
  22. J. R. Quine, S. H. Heydari, R. Y. Song, Zeta regularized products, Trans. Amer. Math. Soc. 338, 213–231 (1993). [CrossRef] [Google Scholar]
  23. S. S. Rout, G. K. Panda, Balancing Dirichlet series and related L-functions. Indian J. Pure Appl. Math. 45, (2014), 943–952 (2014). [CrossRef] [Google Scholar]
  24. V. V. Smirnov, The ζ-regularized product over all primes, Preprint (2015), electronically available at [Google Scholar]
  25. C. Soulé, D. Abramovich, J.-F. Burnol, J. Kramer, The determinant of Laplace operators, in Lectures on Arakelov Geometry, Cambridge Studies in Advanced Mathematics 33, Cambridge University Press, Cambridge, 1992, pp. 93–114. [Google Scholar]
  26. A. Sourmelidis, On the meromorphic continuation of Beatty Zeta-functions and Sturmian Dirichlet series, J. Number Theory 194, 303–318 (2019). [CrossRef] [Google Scholar]
  27. G. N. Watson, Theorems stated by Ramanujan (VIII): Theorems on divergent series, J. London Math. Soc. 4, 82–86 (1929). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.