Open Access
Issue |
EPJ Web Conf.
Volume 245, 2020
24th International Conference on Computing in High Energy and Nuclear Physics (CHEP 2019)
|
|
---|---|---|
Article Number | 02015 | |
Number of page(s) | 8 | |
Section | 2 - Offline Computing | |
DOI | https://doi.org/10.1051/epjconf/202024502015 | |
Published online | 16 November 2020 |
- A.G. Baydin, B.A. Pearlmutter, A.A. Radul, J.M. Siskind, Automatic differentiation in machine learning: a survey, in The Journal of Machine Learning Research (JMLR.org, 2017), Vol. 18, pp. 5595–5637 [Google Scholar]
- A.H. Gebremedhin, A. Walther, An introduction to algorithmic differentiation, in Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery (Wiley Online Library, 2020), Vol. 10, p. e1334 [Google Scholar]
- A. Griewank, A. Walther, Evaluating derivatives: principles and techniques of algorithmic differentiation, Vol. 105 (SIAM, 2008) [CrossRef] [Google Scholar]
- R. Brun, F. Rademakers, ROOT — An object oriented data analysis framework, in Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment (Elsevier BV, 1997), Vol. 389, pp. 81–86 [Google Scholar]
- V. Vassilev, M. Vassilev, A. Penev, L. Moneta, V. Ilieva, Clad – automatic differentiation using Clang and LLVM, in Journal of Physics: Conference Series (IOP Publishing, 2015), Vol. 608, p. 012055 [Google Scholar]
- V. Vassilev, Clad – automatic differentiation for C/C++ (2014), https://github.com/vgvassilev/clad/ [Google Scholar]
- C. Bischof, P. Khademi, A. Mauer, A. Carle, ADIFOR 2.0: Automatic differentiation of Fortran 77 programs, in IEEE Computational Science and Engineering (IEEE, 1996), Vol. 3, pp. 18–32 [Google Scholar]
- C.H. Bischof, L. Roh, A.J. Mauer-Oats, ADIC: an extensible automatic differentiation tool for ANSI-C, in Software: Practice and Experience (Wiley Online Library, 1997), Vol. 27, pp. 1427–1456 [Google Scholar]
- A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison, L. Antiga, A. Lerer, Automatic differentiation in PyTorch (2017) [Google Scholar]
- J. Bradbury, R. Frostig, P. Hawkins, M.J. Johnson, C. Leary, D. Maclaurin, S. Wanderman-Milne, JAX: composable transformations of Python+NumPy programs (2018), http://github.com/google/jax [Google Scholar]
- M. Innes, A. Edelman, K. Fischer, C. Rackauckas, E. Saba, V.B. Shah, W. Tebbutt, A differentiable programming system to bridge machine learning and scientific computing (2019) [Google Scholar]
- Swift for TensorFlow, https://www.tensorflow.org/swift [Google Scholar]
- M. Pulver, Autodiff – automatic differentiation c++ library (2019), https://github.com/pulver/autodiff [Google Scholar]
- R.J. Hogan, Fast reverse-mode automatic differentiation using expression templates in C++, in ACM Transactions on Mathematical Software (TOMS) (ACM New York, NY, USA, 2014), Vol. 40, pp. 1–16 [CrossRef] [Google Scholar]
- A. Walther, A. Griewank, Getting Started with ADOL-C., in Combinatorial scientific computing (2009), 09061, pp. 181–202 [Google Scholar]
- C. Lattner, V. Adve, LLVM: A Compilation Framework for Lifelong Program Analysis and Transformation (San Jose, CA, USA, 2004), pp. 75–88 [Google Scholar]
- V. Vasilev, P. Canal, A. Naumann, P. Russo, Cling – The New Interactive Interpreter for ROOT 6, in Journal of Physics: Conference Series (IOP Publishing, 2012), Vol. 396, p. 052071 [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.