Open Access
Issue |
EPJ Web Conf.
Volume 245, 2020
24th International Conference on Computing in High Energy and Nuclear Physics (CHEP 2019)
|
|
---|---|---|
Article Number | 02019 | |
Number of page(s) | 7 | |
Section | 2 - Offline Computing | |
DOI | https://doi.org/10.1051/epjconf/202024502019 | |
Published online | 16 November 2020 |
- LHCb Collaboration, Expression of Interest for a Phase-II LHCb Upgrade: Opportunities in flavour physics, and beyond, in the HL-LHC era, CERN report CERN-LHCC-2017003 (2017) [Google Scholar]
- S. Agostinelli et al. GEANT4: A Simulation toolkit. Nucl. Instrum. Meth., A506: 250–303, 2003 [Google Scholar]
- The LHCb Detector at the LHC LHCb Collaboration (Alves, A. AugustoJr., et al.) JINST 3 (2008) S08005 [Google Scholar]
- D. Belayneh, F. Carminati, A. Farbin et al, [arXiv:1912.06794 [physics.ins-det]]. [Google Scholar]
- L. de Oliveira, M. Paganini and B. Nachman, Comput. Softw. Big Sci. 1 (2017) no.1, 4 doi:10.1007/s41781-017-0004-6 [arXiv:1701.05927 [stat.ML]]. [Google Scholar]
- V. Chekalina, E. Orlova, F. Ratnikov, D. Ulyanov, A. Ustyuzhanin and E. Zakharov, EPJ Web Conf. 214 (2019), 02034 doi:10.1051/epjconf/201921402034 [arXiv:1812.01319 [physics.data-an]]. [Google Scholar]
- F. Ratnikov, JINST 15 (2020) no.05, C05032 doi:10.1088/1748-0221/15/05/C05032 [arXiv:2003.12440 [physics.ins-det]]. [CrossRef] [Google Scholar]
- SciPy 1.0 – Fundamental Algorithms for Scientific Computing in Python arXiv:1907.10121v1 [cs.MS], Jul 2019 [Google Scholar]
- XGBoost: A Scalable Tree Boosting System. arXiv:1603.02754 [cs.LG], March 2016 [Google Scholar]
- Bergstra, James, and Yoshua Bengio. “Random search for hyper-parameter optimization.” Journal of machine learning research, 281-305, Feb 2012 [Google Scholar]
- Head T, MechCoder, Louppe G, Shcherbatyi I, fcharras, et al. 2020 Scikit-optimize [software] version 0.7.1 Zenodo https://doi.org/10.5281/zenodo.1207017 [Google Scholar]
- Bergstra J, Yamins D, Cox D D, Making a Science of Model Search: Hyperparameter optimisation in Hundreds of Dimensions for Vision Architectures. Proc. of the 30th International Conference on Machine Learning (ICML 2013) [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.