Open Access
Issue |
EPJ Web Conf.
Volume 245, 2020
24th International Conference on Computing in High Energy and Nuclear Physics (CHEP 2019)
|
|
---|---|---|
Article Number | 07061 | |
Number of page(s) | 8 | |
Section | 7 - Facilities, Clouds and Containers | |
DOI | https://doi.org/10.1051/epjconf/202024507061 | |
Published online | 16 November 2020 |
- G. D. Sciascio, LHAASO Collaboration, The lhaaso experiment: from gamma-ray astronomy to cosmic rays[J]. Nuclear and particle physics proceedings, 279, 166-173 (2016) [CrossRef] [Google Scholar]
- I. Steinwart, D. Hush, C. Scovel, A classification framework for anomaly detection[J]. Journal of Machine Learning Research, 6, 211-32 (2005) [Google Scholar]
- D. Pokrajac, A. Lazarevic, L. J. Latecki, Incremental local outlier detection for data streams[C]//2007 IEEE symposium on computational intelligence and data mining, 504-515 (2007) [CrossRef] [Google Scholar]
- S. Budalakoti, A. N. Srivastava, R. Akella, E. Turkov, Anomaly detection in large sets of high-dimensional symbol sequences[J]. (2006) [Google Scholar]
- F. T. Liu, K. M. Ting, Z. H. Zhou, Isolation-based anomaly detection[J]. ACM Transactions on Knowledge Discovery from Data (TKDD),6, 1-39 (2012) [CrossRef] [Google Scholar]
- M. Markou, S. Singh, Novelty detection: a reviewpart 1: statistical approaches[J]. Signal processing, 83, 2481-2497 (2003) [Google Scholar]
- G. P. ZHANG, Time series forecasting using a hybrid arima and neural network model[J]. Neurocomputing, 50, 159-175 (2003) [Google Scholar]
- M. Markou, S. Singh, Novelty detection: a reviewpart 2: neural network based approaches[J]. Signal processing, 83, 2499-2521 (2003) [Google Scholar]
- Y. CUI, S. AHMAD, J. HAWKINS, Continuous online sequence learning with an unsupervised neural network model[J]. Neural computation, 28, 2474-2504 (2016) [CrossRef] [PubMed] [Google Scholar]
- S. AHMAD, S. PURDY, Real-time anomaly detection for streaming analytics[J]. arXiv preprint arXiv:1607.02480 (2016) [Google Scholar]
- A. Holovaty, J. Kaplan-Moss, The definitive guide to Django: Web development done right (Apress, Berkeley, 2009) [CrossRef] [Google Scholar]
- R. Kuc, M. Rogozinski, Elasticsearch server (Packt Publishing Ltd, Birmingham, 2013) [Google Scholar]
- E. Booth, J. Mount, J. H. Viers, Hydrologic variability of the Cosumnes River floodplain[J]. San Francisco Estuary and Watershed Science, 4(2), (2006) [CrossRef] [Google Scholar]
- S. HANSUN, A New Approach of Browns Double Exponential Smoothing Method in Time Series Analysis[J]. Balkan Journal of Electrical and Computer Engineering ,4(2), 75-7 (2016) [CrossRef] [Google Scholar]
- J. DING, N. MEADE, Forecasting accuracy of stochastic volatility, garch and ewma models under dierent volatility scenarios[J]. Applied Financial Economics, 20(10), 771-783 (2010) [CrossRef] [Google Scholar]
- J. Huang, C. Li, J. Yu, Resource prediction based on double exponential smoothing in cloud computing[C]//In 2012 2nd International Conference on Consumer Electronics, Communications and Networks (CECNet), IEEE, 2056-2060 (2012) [CrossRef] [Google Scholar]
- S. Hochreiter, J. Schmidhuber, Long Short-Term Memory[J]. Neural Computation, 9, 1735 (1997) [CrossRef] [Google Scholar]
- F. T. LIU, K. M TING, Z. H. ZHOU, Isolation-based anomaly detection[J]. ACM Transactions on Knowledge Discovery from Data (TKDD), 6(1), 1-39 (2012) [CrossRef] [Google Scholar]
- S. LUSTRE, Building a le system for 1000 node clusters[C]//Proc. Of the 2003 Ottawa Linux Symp. Ottawa: RedHat, 407, (2003) [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.