Open Access
Issue |
EPJ Web Conf.
Volume 245, 2020
24th International Conference on Computing in High Energy and Nuclear Physics (CHEP 2019)
|
|
---|---|---|
Article Number | 09002 | |
Number of page(s) | 9 | |
Section | 9 - Exascale Science | |
DOI | https://doi.org/10.1051/epjconf/202024509002 | |
Published online | 16 November 2020 |
- F. Stagni et al., DIRACGrid/DIRAC (2018). https://doi.org/10.5281/zenodo.1451647 [Google Scholar]
- LHCb Coll., LHCbDIRAC (2018). https://doi.org/10.5281/zenodo.1451768 [Google Scholar]
- T. Boccali et al., Extension of the INFN Tier-1 on a HPC system, to appear in Proc. CHEP2019, Adelaide (2019). https://indico.cern.ch/event/773049/contributions/3474805 [Google Scholar]
- M. Clemencic et al., The LHCb Simulation Application, Gauss: Design, Evolution and Experience, Proc. CHEP2010, Taipei, J. Phys. Conf. Ser. 331, 032023 (2011). https://doi.org/10.1088/1742-6596/331/3/032023 [CrossRef] [Google Scholar]
- J. Blomer et al., Distributing LHC application software and conditions databases using the CernVM file system, Proc. CHEP2010, Taipei, J. Phys. Conf. Ser. 331, 042003 (2011). https://doi.org/10.1088/1742-6596/331/4/042003 [CrossRef] [Google Scholar]
- F. G. Sciacca, S. Haug et al., ATLAS and LHC computing on CRAY, Proc. CHEP2016, San Francisco, J. Phys. Conf. Ser. 898, 082004 (2017). https://doi.org/10.1088/1742-6596/898/8/082004 [CrossRef] [Google Scholar]
- Marconi at CINECA, http://www.hpc.cineca.it/hardware/marconi [Google Scholar]
- top500 rankings as of November 2019, https://www.top500.org/lists/2019/11 [Google Scholar]
- G. M. Kurtzer, V. Sochat, M. W. Bauer, Singularity: Scientific containers for mobility of compute, PLoS ONE 12, e0177459 (2017). https://doi.org/10.1371/journal.pone.0177459 [Google Scholar]
- I. Belyaev et al., Handling of the generation of primary events in Gauss, the LHCb simulation framework, Proc. CHEP2010, Taipei, J. Phys. Conf. Ser. 331, 032047 (2011). https://doi.org/10.1088/1742-6596/331/3/032047 [CrossRef] [Google Scholar]
- S. Agostinelli et al., Geant4 — a simulation toolkit, NIM A 506, 250 (2003). https://doi.org/10.1016/S0168-9002(03)01368-8 [CrossRef] [Google Scholar]
- G. Corti et al., Computing performance of the LHCb simulation, 24th Geant4 Collaboration Meeting, JLAB (2019). https://indico.cern.ch/event/825306/contributions/3565311 [Google Scholar]
- D. Muller, Gaussino a Gaudi-based core simulation framework, to appear in Proc. CHEP2019, Adelaide (2019). https://indico.cern.ch/event/773049/contributions/3474740 [Google Scholar]
- N. Rauschmayr, A. Streit, Preparing the Gaudi framework and the DIRAC WMS for multicore job submission, Proc. CHEP2013, Amsterdam, J. Phys. Conf. Ser. 513, 052029 (2014). https://doi.org/10.1088/1742-6596/513/5/052029 [CrossRef] [Google Scholar]
- N. Rauschmayr, Optimisation of LHCb applications for multiand manycore job submission, CERN-THESIS-2014-242 (2014). https://cds.cern.ch/record/1985236 [Google Scholar]
- A. Valassi, S. Muralidharan, Trident analysis of the LHCb GEN/SIM workload from the benchmarking suite, System performance modelling WG meeting, CERN (2019). https://indico.cern.ch/event/772026 [Google Scholar]
- J. Elmsheuser et al., ATLAS Grid Workflow Performance Optimization, Proc. CHEP2018, Sofia, EPJ Web of Conf. 214, 03021 (2019). https://doi.org/10.1051/epjconf/201921403021 [CrossRef] [Google Scholar]
- F. Stagni et al., DIRAC in Large Particle Physics Experiments, Proc. CHEP2016, San Francisco, J. Phys. Conf. Ser. 898, 092020 (2017). https://doi.org/10.1088/1742-6596/898/9/092020 [Google Scholar]
- S. Camarasu-Pop et al., Exploiting GPUs on distributed infrastructures for medical imaging applications with VIP and DIRAC, Proc. MIPRO2019, Opatija (2019). https://doi.org/10.23919/mipro.2019.8757075 [Google Scholar]
- DIRAC project GitHub repository, https://github.com/DIRACGrid [Google Scholar]
- F. Stagni et al., DIRAC universal pilots, Proc. CHEP2016, San Francisco, J. Phys. Conf. Ser. 898, 092024 (2017). https://doi.org/10.1088/1742-6596/898/9/092024 [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.