Open Access
Issue
EPJ Web Conf.
Volume 246, 2020
Joint EPS-SIF International School on Energy. Course 5 – “Energy: Where we stand and where we go”
Article Number 00005
Number of page(s) 32
DOI https://doi.org/10.1051/epjconf/202024600005
Published online 16 December 2020
  1. Metz A. et al., International Technology Roadmap for Photovoltaics (ITRPV) 2017 (ITRPV, VDMA) 2017, pp. 1–40. [Google Scholar]
  2. Green M. A., Dunlop E. D., Hohl-Ebinger J., Yoshita M., Kopidakis N. and Ho-Baillie A. W. Y., Prog. Photovolt. Res. Appl., 28 (2020) 3. [Google Scholar]
  3. Shaheen S. E., Brabec C. J., Sariciftci N. S., Padinger F., Fromherz T. and Hummelen J. C., Appl. Phys. Lett., 78 (2001) 841. [Google Scholar]
  4. Halls J. J. M., Pichler K., Friend R. H., Moratti S. C. and Holmes A. B., Appl. Phys. Lett., 68 (1996) 3120. [Google Scholar]
  5. Brabec C. J. and Durrant J. R., MRS Bull., 33 (2011) 670. [Google Scholar]
  6. Battaglia C., Cuevas A. and De Wolf S., Energy Environ. Sci., 9 (2016) 1552. [Google Scholar]
  7. Tanaka M., Taguchi M., Matsuyama T., Sawada T., Tsuda S., Nakano S., Hanafusa H. and Kumano Y., Jpn. J. Appl. Phys., 31 (1992) 3518. [Google Scholar]
  8. Martini M. T. L., Serenelli L., Menchini F., Izzi M., Asquini R., de Cesare G. and Caputo D., EU PVSEC 2017 – 33nd European Photovoltaic Solar Energy Conference Exhibition, Conf. Proc., 1 (2017) pp. 773–776. [Google Scholar]
  9. Johnsson M. and Lemmens P., Handb. Magn. Adv. Magn. Mater., 4 (2007) 1, https://doi.org/10.1002/9780470022184.hmm411. [Google Scholar]
  10. Meng L., Zhang Y., Wan X., Li C., Zhang X., Wang Y., Ke X., Xiao Z., Ding L., Xia R., Yip H. L., Cao Y. and Chen Y., Science, 361 (2018) 1094. [Google Scholar]
  11. O’Regan B. and Grätzel M., Nature, 353 (1991) 737. [Google Scholar]
  12. Polman A., Knight M., Garnett E. C., Ehrler B. and Sinke W. C., Science, 352 (2016) 4424. [Google Scholar]
  13. Hagfeldt A., in Ambio, Vol. 41 (Springer) 2012, pp. 151–155. [Google Scholar]
  14. Hayes M., Martel B., Alam G. W., Lignier H., Dubois S., Pihan E. and Palais O., Phys. Status Solidi, 216 (2019) 1900321. [CrossRef] [Google Scholar]
  15. Jean J., Brown P. R., Jaffe R. L., Buonassisi T. and Bulović V., Energy Environ. Sci., 8 (2015) 1200. [Google Scholar]
  16. Wertz R. et al., International Technology Roadmap for Fotovoltaics (ITRPV), 2014 Results, 6th edition, April 2015, pp. 1–38. [Google Scholar]
  17. Czochralski J., Z. Phys. Chem., 92U (2017) 219. [Google Scholar]
  18. Best Research-Cell Efficiency Chart | Photovoltaic Research | NREL, https://www.nrel.gov/pv/cell-efficiency.html (accessed 13 July 2020). [Google Scholar]
  19. Yablonovitch E., Gmitter T., Harbison J. P. and Bhat R., Appl. Phys. Lett., 51 (1987) 2222. [Google Scholar]
  20. Jones-Albertus R., Becker E., Bergner R., Bilir T., Derkacs D., Fidaner O., Jory D., Liu T., Lucow E., Misra P., Pickett E., Suarez F., Sukiasyan A., Sun T., Zhang L., Sabnis V., Wiemer M. and Yuen H., in Materials Research Society Symposium Proceedings, Vol. 1538 (Cambridge University Press) 2013, pp. 161–166. [CrossRef] [Google Scholar]
  21. King R. R., Bhusari D., Larrabee D., Liu X. Q., Rehder E., Edmondson K., Cotal H., Jones R. K., Ermer J. H., Fetzer C. M., Law D. C. and Karam N. H., in Progress in Photovoltaics: Research and Applications, Vol. 20 (John Wiley and Sons Ltd) 2012, pp. 801–815. [Google Scholar]
  22. Chiu P. T., Law D. C., Woo R. L., Singer S. B., Bhusari D., Hong W. D., Zakaria A., Boisvert J., Mesropian S., King R. R. and Karam N. H., IEEE J. Photovolt., 4 (2014) 493. [Google Scholar]
  23. International Technology Roadmap for Photovoltaic (ITRPV), https://itrpv.vdma.org/. [Google Scholar]
  24. Luque Antonio and Hegedus Steven (Editors), Handbook of Photovoltaic Science and Engineering (Wiley) 2003, ISBN:9780471491965; DOI:10.1002/0470014008. [CrossRef] [Google Scholar]
  25. Staebler D. L. and Wronski C. R., Appl. Phys. Lett., 31 (1977) 292. [Google Scholar]
  26. CdTe PV: Real and Perceived EHS Risks (Conference), https://www.osti.gov/biblio/15004247 (accessed 13 July 2020). [Google Scholar]
  27. Kessler F. and Rudmann D., Sol. Energy, 77 (2004) 685. [Google Scholar]
  28. Hetzer M. J., Strzhemechny Y. M., Gao M., Contreras M. A., Zunger A. and Brillson L. J., Appl. Phys. Lett., 86 (2005) 162105. [Google Scholar]
  29. Werner J. H., Mattheis J. and Rau U., in Thin Solid Films, Vols. 480–481 (Elsevier) 2005, pp. 399–409. [Google Scholar]
  30. Nishiwaki S., Siebentritt S., Walk P. and Lux-Steiner M. C., Prog. Photovolt. Res. Appl., 11 (2003) 243. [Google Scholar]
  31. Hsu D. D., O’Donoughue P., Fthenakis V., Heath G. A., Kim H. C., Sawyer P., Choi J. K. and Turney D. E., J. Ind. Ecol., 16 (2012) S122. [Google Scholar]
  32. Kim H. C., Fthenakis V., Choi J.-K. and Turney D. E., J. Ind. Ecol., 16 (2012) S110. [Google Scholar]
  33. Todorov T. K., Tang J., Bag S., Gunawan O., Gokmen T., Zhu Y. and Mitzi D. B., Adv. Energy Mater., 3 (2013) 34. [Google Scholar]
  34. Katagiri H., Jimbo K., Maw W. S., Oishi K., Yamazaki M., Araki H. and Takeuchi A., Thin Solid Films, 517 (2009) 2455. [Google Scholar]
  35. Hobson T. D. C., Phillips L. J., Hutter O. S., Durose K. and Major J. D., Appl. Phys. Lett., 116 (2020) 261101. [Google Scholar]
  36. Wang W., Winkler M. T., Gunawan O., Gokmen T., Todorov T. K., Zhu Y. and Mitzi D. B., Adv. Energy Mater., 4 (2014) 1301465. [Google Scholar]
  37. Hagfeldt A., Boschloo G., Sun L., Kloo L. and Pettersson H., Chem. Rev., 110 (2010) 6595. [Google Scholar]
  38. Grätzel M., Inorg. Chem., 44 (2005) 6841. [Google Scholar]
  39. Grätzel M., J. Photochem. Photobiol. C Photochem. Rev., 4 (2003) 145. [Google Scholar]
  40. Nazeeruddin M. K., Péchy P., Renouard T., Zakeeruddin S. M., Humphry-Baker R., Cointe P., Liska P., Cevey L., Costa E., Shklover V., Spiccia L., Deacon G. B., Bignozzi C. A. and Grätzel M., J. Am. Chem. Soc., 123 (2001) 1613. [Google Scholar]
  41. Snaith H. J. and Schmidt-Mende L., Adv. Mater., 19 (2007) 3187. [Google Scholar]
  42. Chung I., Lee B., He J., Chang R. P. H. and Kanatzidis M. G., Nature, 485 (2012) 486. [CrossRef] [PubMed] [Google Scholar]
  43. Bach U., Lupo D., Comte P., Moser J. E., Weissörtel F., Salbeck J., Spreitzer H. and Grätzel M., Nature, 395 (1998) 583. [Google Scholar]
  44. Yella A., Lee H. W., Tsao H. N., Yi C., Chandiran A. K., Nazeeruddin M. K., Diau E. W. G., Yeh C. Y., Zakeeruddin S. M. and Grätzel M., Science, 334 (2011) 629. [Google Scholar]
  45. Green M. A., Prog. Photovolt. Res. Appl., 23 (2015) 1202. [Google Scholar]
  46. Kim H. S., Lee C. R., Im J. H., Lee K. B., Moehl T., Marchioro A., Moon S. J., Humphry-Baker R., Yum J. H., Moser J. E., Grätzel M. and Park N. G., Sci. Rep., 2 (2012) 591. [Google Scholar]
  47. Lee M. M., Teuscher J., Miyasaka T., Murakami T. N. and Snaith H. J., Science, 338 (2012) 643. [Google Scholar]
  48. Peumans P., Yakimov A. and Forrest S. R., J. Appl. Phys., 93 (2003) 3693. [Google Scholar]
  49. Riede M. et al., Nanotechnology, 19 (2008) 424001. [CrossRef] [PubMed] [Google Scholar]
  50. Günes S., Neugebauer H. and Sariciftci N. S., Chem. Rev., 107 (2007) 1324. [Google Scholar]
  51. Li G., Zhu R. and Yang Y., Nat. Photon., 6 (2012) 153. [Google Scholar]
  52. Krebs F. C., Sol. Energy Mater. Sol. Cells, 93 (2009) 394. [Google Scholar]
  53. Kim J. Y., Lee K., Coates N. E., Moses D., Nguyen T. Q., Dante M. and Heeger A. J., Science, 317 (2007) 222. [Google Scholar]
  54. Kawano K., Pacios R., Poplavskyy D., Nelson J., Bradley D. D. C. and Durrant J. R., Sol. Energy Mater. Sol. Cells, 90 (2006) 3520. [Google Scholar]
  55. Lunt R. R., Osedach T. P., Brown P. R., Rowehl J. A. and Bulović V., Adv. Mater., 23 (2011) 5712. [Google Scholar]
  56. Lan X., Masala S. and Sargent E. H., Nat. Mater., 13 (2014) 233. [Google Scholar]
  57. Semonin O. E., Luther J. M. and Beard M. C., Mater. Today, 15 (2012) 508. [CrossRef] [Google Scholar]
  58. Tang J. and Sargent E. H., Adv. Mater., 23 (2011) 12. [Google Scholar]
  59. Choi J. J., Wenger W. N., Hoffman R. S., Lim Y. F., Luria J., Jasieniak J., Marohn J. A. and Hanrath T., Adv. Mater., 23 (2011) 3144. [Google Scholar]
  60. Wang X., Koleilat G. I., Tang J., Liu H., Kramer I. J., Debnath R., Brzozowski L., Barkhouse D. A. R., Levina L., Hoogland S. and Sargent E. H., Nat. Photon., 5 (2011) 480. [Google Scholar]
  61. Chuang C. H. M., Brown P. R., Bulović V. and Bawendi M. G., Nat. Mater., 13 (2014) 796. [Google Scholar]
  62. Brown P. R., Kim D., Lunt R. R., Zhao N., Bawendi M. G., Grossman J. C. and Bulović V., ACS Nano, 8 (2014) 5863. [Google Scholar]
  63. Ip A. H., Thon S. M., Hoogland S., Voznyy O., Zhitomirsky D., Debnath R., Levina L., Rollny L. R., Carey G. H., Fischer A., Kemp K. W., Kramer I. J., Ning Z., Labelle A. J., Chou K. W., Amassian A. and Sargent E. H., Nat. Nanotechnol., 7 (2012) 577. [Google Scholar]
  64. Jasieniak J., Califano M. and Watkins S. E., in ACS Nano, Vol. 5 (American Chemical Society) 2011, pp. 5888–5902. [Google Scholar]
  65. Tang J., Kemp K. W., Hoogland S., Jeong K. S., Liu H., Levina L., Furukawa M., Wang X., Debnath R., Cha D., Chou K. W., Fischer A., Amassian A., Asbury J. B. and Sargent E. H., Nat. Mater., 10 (2011) 765. [Google Scholar]
  66. Zhitomirsky D., Voznyy O., Levina L., Hoogland S., Kemp K. W., Ip A. H., Thon S. M. and Sargent E. H., Nat. Commun., 5 (2014) 3803. [Google Scholar]
  67. Mitzi D. B., Feild C. A., Harrison W. T. A. and Guloy A. M., Nature, 369 (1994) 467. [Google Scholar]
  68. Kojima A., Teshima K., Shirai Y. and Miyasaka T., J. Am. Chem. Soc., 131 (2009) 6050. [Google Scholar]
  69. Chen Q., De Marco N., Yang Y., Bin Song T., Chen C. C., Zhao H., Hong Z., Zhou H. and Yang Y., Nano Today, 10 (2015) 355. [Google Scholar]
  70. Lee M. M., Teuscher J., Miyasaka T., Murakami T. N. and Snaith H. J., Science, 338 (2012) 643. [Google Scholar]
  71. Frost J. M., Butler K. T., Brivio F., Hendon C. H., Van Schilfgaarde M. and Walsh A., Nano Lett., 14 (2014) 2584. [Google Scholar]
  72. Atourki L., Vega E., Maŕı B., Mollar M., Ait Ahsaine H., Bouabid K. and Ihlal A., Appl. Surf. Sci., 371 (2016) 112. [Google Scholar]
  73. Comin R., Walters G., Thibau E. S., Voznyy O., Lu Z. H. and Sargent E. H., J.Mater. Chem. C, 3 (2015) 8839. [CrossRef] [Google Scholar]
  74. Hoke E. T., Slotcavage D. J., Dohner E. R., Bowring A. R., Karunadasa H. I. and McGehee M. D., Chem. Sci., 6 (2015) 613. [Google Scholar]
  75. Mahesh S., Ball J. M., Oliver R. D. J., McMeekin D. P., Nayak P. K., Johnston M. B. and Snaith H. J., Energy Environ. Sci., 13 (2020) 258. [Google Scholar]
  76. Li J., Cao H. L., Bin Jiao W., Wang Q., Wei M., Cantone I., Lü J. and Abate A., Nat. Commun., 11 (2020) 310. [Google Scholar]
  77. Ke W. and Kanatzidis M. G., Nat. Commun., 10 (2019) 965. [Google Scholar]
  78. Lee S. J., Shin S. S., Kim Y. C., Kim D., Ahn T. K., Noh J. H., Seo J. and Il Seok S., J. Am. Chem. Soc., 138 (2016) 3974. [Google Scholar]
  79. Leijtens T., Eperon G. E., Noel N. K., Habisreutinger S. N., Petrozza A. and Snaith H. J., Adv. Energy Mater., 5 (2015) 1500963. [Google Scholar]
  80. Holzhey P., Yadav P., Turren-Cruz S. H., Grätzel M., Hagfeldt A. and Saliba M., Mater. Today, 29 (2019) 10, DOI:10.1016/j.mattod.2018.10.017. [CrossRef] [Google Scholar]
  81. Asghar M. I., Zhang J., Wang H. and Lund P. D., Renew. Sustain. Energy Rev., 77 (2017) 131. [Google Scholar]
  82. Goldschmidt V. M., Ber. Dtsch. Chem. Gesellschaft A B Ser., 60 (1927) 1263. [Google Scholar]
  83. Saliba M., Matsui T., Seo J. Y., Domanski K., Correa-Baena J. P., Nazeeruddin M. K., Zakeeruddin S. M., Tress W., Abate A., Hagfeldt A. and Grätzel M., Energy Environ. Sci., 9 (2016) 1989. [Google Scholar]
  84. Bu T., Liu X., Zhou Y., Yi J., Huang X., Luo L., Xiao J., Ku Z., Peng Y., Huang F., Cheng Y. B. and Zhong J., Energy Environ. Sci., 10 (2017) 2509. [Google Scholar]
  85. Saliba M., Matsui T., Domanski K., Seo J. Y., Ummadisingu A., Zakeeruddin S. M., Correa-Baena J. P., Tress W. R., Abate A., Hagfeldt A. and Grätzel M., Science, 354 (2016) 206. [Google Scholar]
  86. Tao S., Schmidt I., Brocks G., Jiang J., Tranca I., Meerholz K. and Olthof S., Nat. Commun., 10 (2019) 2560, DOI:10.1038/s41467-019-10468-7. [Google Scholar]
  87. D’Innocenzo V., Grancini G., Alcocer M. J. P., Kandada A. R. S., Stranks S. D., Lee M. M., Lanzani G., Snaith H. J. and Petrozza A., Nat. Commun., 5 (2014) 3586. [Google Scholar]
  88. Dualeh A., Tétreault N., Moehl T., Gao P., Nazeeruddin M. K. and Grätzel M., Adv. Funct. Mater., 24 (2014) 3250. [Google Scholar]
  89. Yantara N., Sabba D., Yanan F., Kadro J. M., Moehl T., Boix P. P., Mhaisalkar S., Grätzel M. and Grätzel C., Chem. Commun., 51 (2015) 4603. [Google Scholar]
  90. Jeon N. J., Noh J. H., Kim Y. C., Yang W. S., Ryu S. and Il Seok S., Nat. Mater., 13 (2014) 897. [Google Scholar]
  91. Bi D., Yi C., Luo J., Décoppet J. D., Zhang F., Zakeeruddin S. M., Li X., Hagfeldt A. and Grätzel M., Nat. Energy, 1 (2016) 16142. [Google Scholar]
  92. Xiao M., Huang F., Huang W., Dkhissi Y., Zhu Y., Etheridge J., Gray-Weale A., Bach U., Cheng Y. B. and Spiccia L., Angew. Chem. Int. Ed., 53 (2014) 9898. [Google Scholar]
  93. Burschka J., Pellet N., Moon S. J., Humphry-Baker R., Gao P., Nazeeruddin M. K. and Grätzel M., Nature, 499 (2013) 316. [CrossRef] [PubMed] [Google Scholar]
  94. Liang K., Mitzi D. B. and Prikas M. T., Chem. Mater., 10 (1998) 403. [Google Scholar]
  95. Zhao J. J., Wang P., Liu Z. H., Wei L. Y., Yang Z., Chen H. R., Fang X. Q., Liu X. L. and Mai Y. H., Dalt. Trans., 44 (2015) 17841. [Google Scholar]
  96. Dong Q., Yuan Y., Shao Y., Fang Y., Wang Q. and Huang J., Energy Environ. Sci., 8 (2015) 2464. [Google Scholar]
  97. Yang W. S., Noh J. H., Jeon N. J., Kim Y. C., Ryu S., Seo J. and Il Seok S., Science, 348 (2015) 1234. [Google Scholar]
  98. Scriven L. E., MRS Proc., 121 (1988) 717, DOI:10.1557/proc-121-717. [Google Scholar]
  99. Yaghoobi Nia N., Lamanna E., Zendehdel M., Palma A. L., Zurlo F., Castriotta L. A. and Di Carlo A., Small, 15 (2019) 1904399. [Google Scholar]
  100. Razza S., Di Giacomo F., Matteocci F., Cinà L., Palma A. L., Casaluci S., Cameron P., D’Epifanio A., Licoccia S., Reale A., Brown T. M. and Di Carlo A., J. Power Sources, 277 (2015) 286. [Google Scholar]
  101. Yaghoobi Nia N., Giordano F., Zendehdel M., Cina` L., Palma A. L., Medaglia P. G., Zakeeruddin S. M., Grätzel M. and Di Carlo A., Nano Energy, 69 (2020) 104441. [Google Scholar]
  102. Zhang J., Bu T., Li J., Li H., Mo Y., Wu Z., Liu Y., Zhang X. L., Cheng Y. B. and Huang F., J. Mater. Chem. A, 8 (2020) 8447. [CrossRef] [Google Scholar]
  103. Deng Y., Peng E., Shao Y., Xiao Z., Dong Q. and Huang J., Energy Environ. Sci., 8 (2015) 1544. [Google Scholar]
  104. Hwang K., Jung Y. S., Heo Y. J., Scholes F. H., Watkins S. E., Subbiah J., Jones D. J., Kim D. Y. and Vak D., Adv. Mater., 27 (2015) 1241. [Google Scholar]
  105. Liu M., Johnston M. B. and Snaith H. J., Nature, 501 (2013) 395. [CrossRef] [PubMed] [Google Scholar]
  106. Chen C.-W., Kang H.-W., Hsiao S.-Y., Yang P.-F., Chiang K.-M. and Lin H.-W., Adv. Mater., 26 (2014) 6647. [Google Scholar]
  107. Li J., Wang H., Chin X. Y., Dewi H. A., Vergeer K., Goh T. W., Lim J. W. M., Lew J. H., Loh K. P., Soci C., Sum T. C., Bolink H. J., Mathews N., Mhaisalkar S. and Bruno A., Joule, 4 (2020) 1035, DOI:10.1016/j.joule.2020.03.005. [CrossRef] [Google Scholar]
  108. Ono L. K., Leyden M. R., Wang S. and Qi Y., J. Mater. Chem. A, 4 (2016) 6693. [CrossRef] [Google Scholar]
  109. Sutherland B. R., Hoogland S., Adachi M. M., Wong C. T. O. and Sargent E. H., ACS Nano, 8 (2014) 10947. [Google Scholar]
  110. Yi C., Luo J., Meloni S., Boziki A., Ashari-Astani N., Grätzel C., Zakeeruddin S. M., Röthlisberger U. and Grätzel M., Energy Environ. Sci., 9 (2016) 656. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.