Open Access
Issue
EPJ Web Conf.
Volume 246, 2020
Joint EPS-SIF International School on Energy. Course 5 – “Energy: Where we stand and where we go”
Article Number 00018
Number of page(s) 32
DOI https://doi.org/10.1051/epjconf/202024600018
Published online 16 December 2020
  1. Bettgenhuser K., Offermann M., Sandau F. and Gerhardt N., Technical Report (Ecofys Deutschland, Kӧln and Fraunhofer-Institut für Windenergie und Energiesystemtechnik, Kassel (Im Auftrag des Umweltbundesamtes)) 2016. [Google Scholar]
  2. Saint-Drenan Y.-M., von Oehsen A., Gerhardt N., Sterner M., Bofinger S. and Rohrig K., Technical Report (Fraunhofer Institut für Windenergie und Energies- ystemtechnik (IWES) Kassel FuE-Bereich Energiewirtschaft und Netzbetrieb) 2009. [Google Scholar]
  3. MacKay D. J. C., Sustainable Energy Without the Hot Air, 2nd edition (UIT) 2008, ISBN 9780954452933/978-1-906860-01-1. [Google Scholar]
  4. Linnemann T. and Vallana G. S., Technical Report (VGB PowerTech), 8 (2017) pp. 70–79. [Google Scholar]
  5. Linnemann T. and Vallana G. S., Technical Report (VGB PowerTech), 6 (2017) pp. 63–73. [Google Scholar]
  6. Varone A. and Ferrari M., Renew. Sustain. Energy Rev., 45 (2015) 207. [CrossRef] [Google Scholar]
  7. Holland H. D., Philos. Trans. R. Soc. B, (2006) 903. [Google Scholar]
  8. Lyons T. W., Reinhard C. T. and Planavsky N. J., Nature, 506 (2014) 307. [CrossRef] [PubMed] [Google Scholar]
  9. Tesla model sp100d specifications 2016-2019, according to ev-database.org/car/1075/tesla-model-s-p100d (visited: October 2019). [Google Scholar]
  10. Umweltbundesamt auf Basis AG Energiebilanzen: Auswertungstabellen zur Energiebilanz der Bundesrepublik Deutschland 1990 bis 2017, Stand 07/2018. [Google Scholar]
  11. Canals Casalsab L., Garca B. A. and Canal C., J. Environ. Manag., 232 (2019) 354. [CrossRef] [Google Scholar]
  12. Dai Q., Kelly J. C., Gaines L. and Wang M., Batteries, 5 (2019) 48; doi:10.3390/batteries5020048. [CrossRef] [Google Scholar]
  13. RomareM. and Dahllӧf L., Technical Report IVL (Swedish Environmental Research Institute C 243) 2017, ISBN 978-91-88319-60-9. [Google Scholar]
  14. Source: Wikipedia (en.wikipedia.org/wiki/Bath County Pumped Storage Station) and Charles A. Grymes on www.virginiaplaces.org/energy/bathpumped.html. [Google Scholar]
  15. Source: Wikipedia (de.wikipedia.org/wiki/Liste von Pumpspeicherkraftwerken) and Deutsche Energieagentur (www.dena.de/themen-projekte/energiesysteme/flexibilitaet-und-speicher/pumpspeicher) visited: October 2019. [Google Scholar]
  16. Crabtree G. W., Dresselhaus M. S. and Buchanan M. V., Phys. Today, 57, N. 12 (2004) 39. [Google Scholar]
  17. Many companies are working on large-scale electrolysis plants, the Siemens “silyzer” is one example (http://new.siemens.com/global/en/products/energy/renewable-energy/hydrogen-solutions.html). [Google Scholar]
  18. Searching the web for “elephant toothpaste” yields several illustrative examples for this popular experiment. [Google Scholar]
  19. Bard A. J. and Faulkner L. R., Electrochemical Methods, Fundamentals and Applications (John Wiley and Sons Inc.) 2001, ISBN 0-471-04372-9. [Google Scholar]
  20. Schmidt-Rohr K., J. Chem. Educ., 95 (2018) 1801. [Google Scholar]
  21. Milazzo G. and Carioli S., Tables of Standard Electrode Potentials (London, Wiley) 1978. [Google Scholar]
  22. Swift E. H., Butler E. A. and Haywood E., Quantitative Measurements and Chemical Equilibria (Freeman, New York) 1972. [Google Scholar]
  23. Trasatti S., Electrochim. Acta, 36 (1991) 1659. [Google Scholar]
  24. Trasatti S., Surf. Sci., 335 (1995) 1. [Google Scholar]
  25. Illustrative clips of the reactivity can be found on platforms like youtube, check out: www.youtube.com/watch?v=wqlnsklaloeforanexample. [Google Scholar]
  26. Sato H., Electrochemistry at Metal and Semiconductor Electrodes, 1st edition (Elsevier Science) 1998, ISBN 9780444828064. [Google Scholar]
  27. Lewerenz H. J., ECS Trans., 50 (2013) 3. [Google Scholar]
  28. Ertl G. Knӧzinger H. and Weitkamp J. (Editors), Handbook of Heterogeneous Catalysis (VCH Verlagsgesellschaft mbH) 1997, ISBN 9783527292127. [CrossRef] [Google Scholar]
  29. PourbaixM., Atlas of Electrochemical Equilibria in Aqueous Solutions (Pergamon Press,New York) 1966. [Google Scholar]
  30. Nikolic J., Expsito E., Iniesta J., Gonzlez-Garcia J. and Montiel V., J. Chem. Educ., 77 (2000) 1191. [Google Scholar]
  31. Elgrishi N., Rountree K. J., McCarthy B. D., Rountree E. S., Eisenhart T. T. and Dempsey J. L., J. Chem. Educ., 95 (2018) 197. [Google Scholar]
  32. Climent V. and Feliu J. M., J. Solid State Electrochem., 15 (2011) 1297. [Google Scholar]
  33. Solla-Gulln J., Rodrguez P., Herrero E., Aldaz A. and Feliu J. M., Phys. Chem. Chem. Phys., 10 (2008) 1359. [Google Scholar]
  34. Maci M., Campiña J. M., Herrero E. and Feliu J., J. Electroanal. Chem., 564 (2004)151. [CrossRef] [Google Scholar]
  35. Climent V. and Feliu J. M., Surface Electrochemistry with Pt Single-Crystal Electrodes (Wiley-VCH Verlag GmbH & Co. KGaA.) 2017. [Google Scholar]
  36. Conway B. E., Angerstein-Kozlowska H., Sharp W. B. A. and Criddle E. E., Anal. Chem., 8 (1973) 1331. [Google Scholar]
  37. Climent V. and Feliu J. M., Journal Solid State Electrochem., 15 (2011) 1297. [CrossRef] [Google Scholar]
  38. Janik M. J., McCrum I. T. and Koper M. T. M., J. Catal., 367 (2018) 332337. [Google Scholar]
  39. Inaba M., Quinson J., Bucher J. R. and Arenz M., J. Vis. Exp., 133 (2018) e57105. [Google Scholar]
  40. Stamenkovic V. R., Mun B. S., Arenz M., Mayrhofer K. J. J., Lucas C. A., Wang G., Ross P. N. and Marković N. M., Nat. Mater., 6 (2007) 241. [CrossRef] [PubMed] [Google Scholar]
  41. Mayrhofer K., Blizanac B., Arenz M., Stamenkovic V., Ross P. and Marković N., J. Phys. Chem. B, 109 (2005) 14433. [CrossRef] [PubMed] [Google Scholar]
  42. Neumann S., Schroeder J., Bizzotto F., Arenz M., Dworzak A., Oezaslan M ., Baeumer M. and Kunz S., ChemNanoMat, 5 (2019) 462. [Google Scholar]
  43. Pearce P. E., Yang C., Iadecola A., Rodriguez-Carvajal J., Rousse G., Dedryvre R., Abakumov A. M., Giaume D., Deschamps M., Tarascon J.-M. and Grimaud A., Chem. Mater., 31 (2019) 5845. [Google Scholar]
  44. Markovic´ N. M., Grgur B. N. and Ross P. N., J. Phys. Chem. B, 101 (1997) 5405. [Google Scholar]
  45. Lutz A., Larson R. and Keller J., Int. J. Hydrogen Energy, 27 (2002) 1103. [Google Scholar]
  46. Dau H., Limberg C., Reier T., Risch M., Roggan S. and Strasser P., ChemCatChem, 2 (2010) 724. [Google Scholar]
  47. See for example: info.noahtech.com/blog/5-most-common-industrial-chemicals, www.mixerdirect.com/blogs/mixer-direct-blog/the-top-10-chemicals-produced-in-the-united-statesorsustainabledevelopment.un.org/content/documents/1966Global%20Chemical.pdf. [Google Scholar]
  48. Du F., Warsinger D. M., Urmi T. I., Thiel G. P., Kumar A. and Lienhard V. J. H., Environ. Sci. Technol., 52 (2018) 5949. [Google Scholar]
  49. Haupin W. E., J. Chem. Educ., 60 (1983) 279. [Google Scholar]
  50. Krause H., Kühn M., Nitzsche J., Raabe T., Schuhmann E. and Schütz S., Technical Report (DBIGastechnologisches Institut gGmbH Freiberg) 2016. [Google Scholar]
  51. See for example: www.chlorineindustryreview.com, “The chemical industry in Germany” www.gtai.de or www.eurochlor.org. [Google Scholar]
  52. Barbir F., PEM Fuel Cells, Theory and Practice, 2nd edition (Elsevier Academic Press) 2012, ISBN 9780123877109. [Google Scholar]
  53. Kirubakaran A., Jain S. and Nema R. K., Renew. Sustain. Energy Rev., 13 (2009) 2430. [CrossRef] [Google Scholar]
  54. Sundmacher K., Ind. Eng. Chem. Res., 49 (2010) 10159. [Google Scholar]
  55. Abdalla A. M., Hossain S., Azad A. T., Petra P. M. I., Begum F., Eriksson S. G. and Azad A. K., Renew. Sustain. Energy Rev., 82 (2018) 353. [CrossRef] [Google Scholar]
  56. Lei L., Zhang J., Yuan Z., Liu J., Ni M. and Chen F., Adv. Funct. Mater., 29 (2019) 1903805. [Google Scholar]
  57. Zeis R., Beilstein J. Nanotechnol., 6 (2015) 68. [CrossRef] [PubMed] [Google Scholar]
  58. Al-Baghdadi M. A. R. S. and Al-Janabi H. A. K. S., Energy & Fuels, 21 (2007) 2258. [CrossRef] [Google Scholar]
  59. Keith J. A. and Jacob T., Angew. Chem. Int. Ed., 49 (2010) 9521. [CrossRef] [Google Scholar]
  60. Katsounaros I., Schneider W. B., Meier J. C., Benedikt U., Biedermann P. U., Cuesta A., Auer A. A. and Mayrhofer K. J. J., Phys. Chem. Chem. Phys., 15 (2013) 8058. [Google Scholar]
  61. Nørskov J. K., Rossmeisl J., Logadottir A., Lindqvist L., Kitchin J. R., Bligaard T. and Jnsson H., J. Phys. Chem. B, 108 (2004) 17886. [Google Scholar]
  62. Nørskov J. K., Bligaard T., Hvolbaek B., Abild-Pedersen F., Chorkendorff I. and Christensen C. H., Chem. Soc. Rev., 37 (2008) 2163. [CrossRef] [PubMed] [Google Scholar]
  63. Calle-Vallejo F., Martinez J. I., Garcia-Lastra J. M., Rossmeisl J. and Koper M. T. M., Phys. Rev. Lett., 108 (2012) 116103. [CrossRef] [PubMed] [Google Scholar]
  64. Koper M. T. M., Top. Catal., 58 (2015) 1153. [Google Scholar]
  65. Lefèvre M., Proietti E., Jaouen F. and Dodelet J.-P., Science, 324 (2009) 71. [Google Scholar]
  66. Choi C. H., Choi W. S., Kasian O., Mechler A. K., Sougrati M. T., Brüller S., Strickland K., Jia Q., Mukerjee S., MayrhoferK. J. J. and Jaouen F., Angew. Chem. Int. Ed., 56 (2017) 8809. [CrossRef] [Google Scholar]
  67. Meier J. C., Galeano C., Katsounaros I., Topalov A. A., Kostka A., Schüth F. and Mayrhofer K. J. J., ACS Catal., 2 (2012) 832. [Google Scholar]
  68. Mayrhofer K. J. J., Meier J. C., Ashton S. J., Wiberg G. K. H., Kraus F., Hanzlik M. and Arenz M., Electrochem. Commun., 10 (2008) 1144. [Google Scholar]
  69. Schneider W. B., Benedikt U. and Auer A. A., ChemPhysChem, 14 (2013) 2984. [CrossRef] [PubMed] [Google Scholar]
  70. Benedikt U., Schneider W. B. and Auer A. A., Phys. Chem. Chem. Phys., 15 (2013) 2712. [CrossRef] [PubMed] [Google Scholar]
  71. Poidevin C., Paciok P., Heggen M. and Auer A. A., J. Chem. Phys., 150 (2019) 041705. [Google Scholar]
  72. Yarlagadda V., Carpenter M. K., Moylan T. E., Kukreja R. S., Koestner R., Gu W., Thompson L. and Kongkanand A., ACS Energy Lett., 3 (2018) 618. [Google Scholar]
  73. Padgett E., Andrejevic N., Liu Z., Kongkanand A., Gu W., Moriyama K., Jiang Y., Kumaraguru S., Moylan T. E., Kukreja R. and Muller D. A., J. Electrochem .Soc., 165 (2018) F173. [CrossRef] [Google Scholar]
  74. Kumar S. S. and Himabindu V., Mater. Sci. Energy Technol., 2 (2019) 442. [Google Scholar]
  75. Serrano Lopez S., Reyes Cruz V. E., Cobos-Murcia J. A., Veloz Rodriguez M. A. and Hernandez Avila J., Int. J. Electrochem. Sci., 10 (2015) 9933. [Google Scholar]
  76. Pourbaix M. J. N., Van Muylder J. and de Zoubov N., Plat. Met. Rev. (Johnson Matthey Technol. Rev.), 3 (1959) 47. [Google Scholar]
  77. McCrory C. C. L., Jung S., Peters J. C. and Jaramillo T. F., J. Am. Chem. Soc ., 135 (2013) 16977. [Google Scholar]
  78. Cherevko S., Geiger S., Kasian O., Mingers A. and Mayrhofer K. J. J., J.Electroanal. Chem., 773 (2016) 69. [CrossRef] [Google Scholar]
  79. Cherevko S., Zeradjanin A. R., Topalov A. A., Kulyk N., Katsounaros I. and Mayrhofer K. J. J., ChemCatChem, 6 (2014) 2219. [Google Scholar]
  80. Grote J.-P., Zeradjanin A. R., Cherevko S. and Mayrhofer K. J. J., Rev. Sci. Instrum., 85 (2014) 104101. [CrossRef] [PubMed] [Google Scholar]
  81. Cherevko S., Zeradjanin A. R., Keeley G. P. and Mayrhofer K. J. J., J. Electrochem. Soc., 161 (2014) H822. [Google Scholar]
  82. Spanos I., Auer A. A., Neugebauer S., Deng X., Tüysüz H. and Schlögl R., ACS Catal., 7 (2017) 3768. [Google Scholar]
  83. Mom R., Frevel L., Velasco-Vlez J.-J., Plodinec M., Knop-Gericke A. and Schlögl R., J. Am. Chem. Soc., 141 (2019) 6537. [Google Scholar]
  84. Grewe T., Deng X. and Tuÿsuż H., Chem. Mater., 26 (2014) 3162. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.