Open Access
EPJ Web Conf.
Volume 247, 2021
PHYSOR2020 – International Conference on Physics of Reactors: Transition to a Scalable Nuclear Future
Article Number 04009
Number of page(s) 8
Section Monte Carlo Transport
Published online 22 February 2021
  1. G.C. Pomraning, Linear kinetic theory and particle transport in stochastic mixtures, World Scientific Publishing, NJ, USA (1991). [Google Scholar]
  2. M.M.R. Williams, “Uncertainties in control rod worth in a damaged reactor core,” Ann. Nucl. Energy, 31 pp. 1073–1081 (2004). [Google Scholar]
  3. C. Larmier et al., “Neutron multiplication in random media: Reactivity and kinetics parameters,” Ann. Nucl. Energy, 111 pp. 391–406 (2018). [Google Scholar]
  4. W.B. Doub, “Particle Self-Shielding in Plates Loaded with Spherical Poison Particles,” Nucl. Sci. Eng., 10 pp. 299–307 (1961). [Google Scholar]
  5. T. Yamamoto, “Effect of Purich agglomerates in MOX fuel on reactivity analysis of light water reactor MOX core physics experiments,” Ann. Nucl. Energy, 37 pp. 398–405 (2010). [Google Scholar]
  6. G.B. Zimmerman and M.L. Adams, “Algorithms for Monte Carlo particle transport in binary statistical mixtures,” Trans. Am. Nucl. Soc., 66 pp. 287 (1991). [Google Scholar]
  7. C. Larmier et al., “Monte Carlo Chord Length Sampling for d-dimensional Markov binary mixtures,” J. Quant. Spectrosc. Radiat. Transf., 204 pp. 256–271 (2018). [Google Scholar]
  8. L. A. Santaló, Integral Geometry and Geometric Probability, Addison-Wesley, Reading, MA (1976). [Google Scholar]
  9. R. E. Miles, “The random division of space,” Suppl. Adv. Appl. Prob., 4 pp. 243–266 (1972). [Google Scholar]
  10. C. Larmier et al., “Finite-size effects and percolation properties of Poisson geometries,” Phys. Rev. E, 94 pp. 012130 (2016). [PubMed] [Google Scholar]
  11. C. Larmier et al., “Benchmark solutions for transport in d-dimensional Markov binary mixtures,” J. Quant. Spectrosc. Radiat. Transf., 189 pp. 133–148 (2017). [Google Scholar]
  12. C. Larmier, A. Marinosci, A. Zoia, “Chord length distribution and polyhedral features of anisotropic Markov media,” J. Quant. Spectrosc. Radiat. Transf., 224 pp. 403–414 (2019). [Google Scholar]
  13. C. Deutsch, D. Vanderhaegen, “Radiative transfer in statistically heterogeneous mixtures,” J. Quant. Spectrosc. Radiat. Transf., 44 pp. 163–169 (1990). [Google Scholar]
  14. U. Hahn et al., “Stereological analysis and modeling of gradient structures,” J. Microscopy, 195 pp. 113–124 (1999). [Google Scholar]
  15. R. Schneider, “Nonstationary Poisson hyperplanes and their induced tessellations,” Adv. Appl. Prob., 35 pp. 139–158 (2003). [Google Scholar]
  16. P. Brantley et al., “Verification of a Monte Carlo Levermore-Pomraning algorithm for spatially inhomogeneous binary stochastic media,” Proc. of M&C2019, Portland, OR, August 25-29 (2019). [Google Scholar]
  17. C. Larmier et al., “Monte Carlo particle transport in random media: The effects of mixing statistics,” J. Quant. Spectrosc. Radiat. Transf., 196 pp. 270–286 (2017). [Google Scholar]
  18. C. Larmier, “Stochastic particle transport in disordered media: beyond the Boltzmann equation,” PhD Thesis, Paris-Saclay University (2018). [Google Scholar]
  19. E. Brun et al., “TRIPOLI-4, CEA, EDF and AREVA reference Monte Carlo code,” Ann. Nucl. Energy, 82 pp. 151–160 (2015). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.