Open Access
EPJ Web Conf.
Volume 247, 2021
PHYSOR2020 – International Conference on Physics of Reactors: Transition to a Scalable Nuclear Future
Article Number 06032
Number of page(s) 8
Section Advanced Modelling and Simulation
Published online 22 February 2021
  1. T. M. Pandya, S. R. Johnson, T. M. Evans, G. G. Davidson, S. P. Hamilton and A. T. Godfrey, “Implementation, capabilities, and benchmarking of Shift, a massively parallel Monte Carlo radiation transport code,” Journal of Computational Physics, vol. 308, pp. 239-272, 2016. [Google Scholar]
  2. S. J. Osher and R. P. Fedkiw, Level Set Methods and Dynamic Implicit Surfaces, Springer-Verlag, 2002. [Google Scholar]
  3. J. A. Sethian, Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science, Cambridge: University Press, 1999. [Google Scholar]
  4. D. Higdon, M. Kennedy, J. C. Cavendish, J. A. Cafeo and R. D. Ryne, “Combining field data and computer simulations for calibration and prediction,” SIAM Journal of Scientific Computing, vol. 26, pp. 448-446, 2004. [Google Scholar]
  5. M. C. Kenned and A. O'Hagan, “Bayesian calibration of computer models (with Discussion),” Journal of the Royal Statistical Society - Series B, vol. 63, pp. 425-464, 2001. [Google Scholar]
  6. C. E. Rasmussen and C. K. Williams, “Gaussian Processes for Machine Learning,” Adaptive Computation and Machine Learning, 2005. [Google Scholar]
  7. T. G. Kolda, R. M. Lewis and V. Torczon, “Optimization by direct search: New perspectives on some classical and modern methods,” SIAM reivew, vol. 45, no. 3, pp. 385-482, 2008. [Google Scholar]
  8. C. Audet and J. E. Dennis, “Analysis of generalized pattern searches,” SIAM Journal on optimizaiton, vol. 13, no. 3, pp. 889-903, 2002. [Google Scholar]
  9. L. Eca and M. Hoekstra, “A procedure for the estiamtion of the numerical uncertainty of CFD calculations based on grid refinement studies,” Journal of Computational Physics, pp. 104-130, 2014. [Google Scholar]
  10. S. Osher and J. A. Sethian, “Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations,” Journal of Compuational Physics, pp. 12-49, 1988. [Google Scholar]
  11. Siemens, “STAR-CCM+ documentaion and code description,” [Online]. Available: [Google Scholar]
  12. M. B. Giles, “Multilevel Monte Carlo path simulation,” Operations Research, vol. 56, no. 3, pp. 607-617, 2008. [Google Scholar]
  13. B. Peherstorfer, K. Willcox and M. Gunzberger, “Survey of multifidelity methods in uncertainty propagation, inference, and optimization,” Siam Review, vol. 60, no. 3, pp. 550-591, 2018. [Google Scholar]
  14. V. Torczon, “On the convergence of pattern search algorithms,” SIAM Journal on optimization, vol. 7, no. 1, pp. 1-25, 1997. [Google Scholar]
  15. J. Gero, “Design Optimization,” Academic Press, 1985. [Google Scholar]
  16. O. Sigmund and K. Maute, “Topology optimization approaches, A compartive review,” Structural Multidisciplinary Optimization, vol. 48, pp. 1031-1055, 2013. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.