Open Access
Issue |
EPJ Web Conf.
Volume 247, 2021
PHYSOR2020 – International Conference on Physics of Reactors: Transition to a Scalable Nuclear Future
|
|
---|---|---|
Article Number | 09017 | |
Number of page(s) | 8 | |
Section | Nuclear Data | |
DOI | https://doi.org/10.1051/epjconf/202124709017 | |
Published online | 22 February 2021 |
- AESJ, The Fukushima Daiichi Nuclear Accident: Final Report of the AESJ Investigation Committee, pp. 560, Springer, (2015). [Google Scholar]
- H. Ohashi, H. Sato, Y. Tachibana, et al., “Concept of an inherently-safe high temperature gas-cooled reactor,” Proc of ICANSE 2011, Bali, Indonesia, November 14-17, pp. 50-58 (2011). [Google Scholar]
- Y. Fukaya, N. Mizuta, M. Goto, et al., “Conceptual design study of a high performance commercial HTGR,” Proc of HTR 2018, Warsaw, Poland, October 8-10, #101 (2018). [Google Scholar]
- S. Saito, T. Tanaka, Y. Sudo et al., Design of High Temperature Engineering Test Reactor (HTTR), Japan Atomic Energy Research Institute, JAERI-1332 (1994). [Google Scholar]
- T. Sano, T. Takeda, “Generalized Bias Factor Method for Accurate Prediction of Neutronics Characteristics,” J. Nucl. Sci. Techonol., 43(12), pp.1465-1470 (2006). [Google Scholar]
- OECD/NEA, NEA Loss of Forced Coolant (LOFC) Project, URL: https://www.oecd-nea.org/jointproj/lofc.html [Google Scholar]
- A. Sakon, K. Nakajima, K. Takahashi, et al., “Reactor noise analysis for a graphite-moderated and -reflected core in KUCA,” Proc of PHYSOR 2020, Cambridge, U.K., March 29 – April 2, (2020). [to be published] [Google Scholar]
- K. Yamashita, S. Maruyama, I. Murata, et al., “Optimization of Power Distribution to Achieve Outlet Gas-Goolant Temperature of 950 ◦C for HTTR,” J. Nucl. Sci. Techonol., 29(5), pp.472-481 (1992). [Google Scholar]
- Y. Nagaya, K. Okumura, T. Mori, “A Monte Carlo neutron/photon transport code MVP 2,” Trans. Am. Nucl. Soc., 95(1), pp.662-663 (2006). [Google Scholar]
- ASTM, “ASTM D7301-11(2015): Standard Specification for Nuclear Graphite Suitable for Components Subjected to Low Neutron Irradiation Dose,” ASTM International, West Conshohocken, PA, (2015). [Google Scholar]
- K. Shibata, O. Iwamoto, T. Nakagawa, et al., “JENDL-4.0; A New library for nuclear science and engineering,” J. Nucl. Sci. Techonol., 48(1), pp.1-30 (2011). [Google Scholar]
- M. B. Chadwick, P. Oblozinsky, M. Herman, et al., “ENDF/B-VII.0: Next Generation Evaluated Nuclear Data Library for Nuclear Science and Technology,” Nuclear Data Sheets, 107, pp.2931-3060 (2006). [Google Scholar]
- OECD/NEA Data Bank, JEFF-3.2 Evaluated Data Library-Neutron data, OECD/NEA (2014). URL: http://www. oecd-nea.org/dbforms/data/eva/evatapes/jeff_32/ [Google Scholar]
- K. Takahashi, K. Nakajima, A. Sakon, et al., “R&D to improve accuracy of nuclear prediction for HTGR, (2) Inverse Kinetics Analysis for HTTR Simulated Core in KUCA,” fall meeting of AESJ, Toyama, Japan, Sept. 11-13, 2J15,(2019). [Google Scholar]
- M. Goto, S. Shimakawa, Y. Nakao, et al., “Impact of revised thermal neutron capture cross section of carbon stored in JENDL-4.0 on HTTR criticality calculation,” J. Nucl. Sci. Techonol., 48(7), pp.965-969 (2011). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.