Open Access
EPJ Web Conf.
Volume 247, 2021
PHYSOR2020 – International Conference on Physics of Reactors: Transition to a Scalable Nuclear Future
Article Number 11004
Number of page(s) 8
Section Reactor Operations
Published online 22 February 2021
  1. R. Brittan. “Analysis of the EBR-I core meltdown.” Technical report, Argonne National Lab., Lemont, IL (US) (1958). [Google Scholar]
  2. T. Kozlowski, A. Wysocki, I. Gajev, Y. Xu, T. Downar, K. Ivanov, J. Magedanz, M. Hardgrove, J. March-Leuba, N. Hudson, et al. “Analysis of the OECD/NRC Oskarshamn-2 BWR stability benchmark.” Annals of Nuclear Energy, volume 67, pp. 4–12 (2014). [Google Scholar]
  3. H. Ukai, Y. Morita, Y. Yada, and T. Iwazumi. “Control of xenon spatial oscillations during load follow of nuclear reactor via robust servo systems.” Journal of Nuclear Science and Technology, volume 27(4), pp. 307–319 (1990). [Google Scholar]
  4. R. S. Ántola. “Xenon Spatial Oscillations in Nuclear Power Reactors: an analytical approach through nonlinear modal analysis.” In 31st Annual Meeting, Spanish Nuclear Society, Logroño, Spain (2005). [Google Scholar]
  5. K. Obaidurrahman and J. Doshi. “Spatial instability analysis in pressurized water reactors.” Annals of Nuclear Energy, volume 38(2), pp. 286–294 (2011). [Google Scholar]
  6. R. Wick. “Space-and Time-Dependent Flux Oscillations (and instability) in Thermal Reactors Due to Nonuniform Formation and Depletion of Xenon.” Technical report,Westinghouse Electric Corp. Bettis Plant, Pittsburgh (1958). [Google Scholar]
  7. S. Alten and R. A. Danofsky. “Knowledge base expert system control of spatial xenon oscillations in pressurized water reactors.” Annals of Nuclear Energy, volume 20(10), pp. 691–700 (1993). [Google Scholar]
  8. Y. Shimazu. “Continuous guidance procedure for xenon oscillation control.” Journal of nuclear science and technology, volume 32(2), pp. 95–100 (1995). [Google Scholar]
  9. N. Kastin, A. Kolin, E. Meron, and S. Kinast. “The relation between nuclear reactor core size and xenon-induced spatial oscillations.” In Proc: Physics of Reactors (PHYSOR-2018), April 22–26, Cancun, Mexico. American Nuclear Society (2018). [Google Scholar]
  10. N. Kastin, E. Meron, A. Kolin, and S. Kinast. “Nonlinear stability and limit cycles in xenoninduced reactor oscillations.” Progress in Nuclear Energy, volume 116, pp. 168–179 (2019). [Google Scholar]
  11. E. Meron. Nonlinear physics of ecosystems. CRC Press (2015). [Google Scholar]
  12. M. Cross and H. Greenside. Pattern formation and dynamics in nonequilibrium systems. Cambridge University Press (2009). [Google Scholar]
  13. M. Reed and B. Simon. Methods of Modern Mathematical Physics I: Functional Analysis. Academic Press (1972). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.