Open Access
Issue
EPJ Web Conf.
Volume 247, 2021
PHYSOR2020 – International Conference on Physics of Reactors: Transition to a Scalable Nuclear Future
Article Number 21011
Number of page(s) 8
Section CORTEX
DOI https://doi.org/10.1051/epjconf/202124721011
Published online 22 February 2021
  1. V. Chandola, A. Banerjee, and V. Kumar. “Anomaly Detection: A Survey.” ACM Comput Surv, volume 41(3), pp. 15:1–15:58 (2009). URL http://doi.acm.org/10.1145/1541880.1541882. [Google Scholar]
  2. A. L. Buczak and E. Guven. “A Survey of Data Mining and Machine Learning Methods for Cyber Security Intrusion Detection.” IEEE Communications Surveys Tutorials, volume 18(2), pp. 1153–1176 (2016). [Google Scholar]
  3. A. Chan and A. Ahluwalia. “Feedwater flow measurement in US nuclear power generation stations.” Technical report, Electric Power Research Inst. (1992). [Google Scholar]
  4. C. Demaziere and G. Andhill. “Identification and localization of absorbers of variable strength in nuclear reactors.” Annals of Nuclear Energy, volume 32(8), pp. 812 – 842 (2005). URL http://www.sciencedirect.com/science/article/pii/S0306454905000319. [Google Scholar]
  5. I. Pázsit and C. Demazière. Noise Techniques in Nuclear Systems, pp. 1629–1737. Springer US, Boston, MA (2010). URL https://doi.org/10.1007/978-0-387-98149-9 14. [Google Scholar]
  6. L. Torres, D. Chionis, C. Montalvo, A. Dokhane, and A. Garc´ıa-Berrocal. “Neutron noise analysis of simulated mechanical and thermal-hydraulic perturbations in a PWR core.” Annals of Nuclear Energy, volume 126, pp. 242–252 (2019). [Google Scholar]
  7. E. Laggiard and J. Runkel. “Detection of subcooled boiling in a PWR using noise analysis and calculation of the steam void fraction.” Annals of Nuclear Energy, volume 24(1), pp. 49–54 (1997). [Google Scholar]
  8. F. D. S. Ribeiro, F. Caliva, D. Chionis, A. Dokhane, A. Mylonakis, C. Demaziere, G. Leontidis, and S. Kollias. “Towards a Deep Unified Framework for Nuclear Reactor Perturbation Analysis.” In 2018 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 120–127 (2018). [Google Scholar]
  9. J. Ma and J. Jiang. “Applications of fault detection and diagnosis methods in nuclear power plants: A review.” Progress in nuclear energy, volume 53(3), pp. 255–266 (2011). [Google Scholar]
  10. X. Jin, Y. Guo, S. Sarkar, A. Ray, and R. M. Edwards. “Anomaly detection in nuclear power plants via symbolic dynamic filtering.” IEEE Transactions on Nuclear Science, volume 58(1), pp. 277–288 (2010). [Google Scholar]
  11. H. Hotelling. “Relations Between Two Sets of Variates.” Biometrika, volume 28(3/4), pp. 321–377 (1936). URL http://www.jstor.org/stable/2333955. [Google Scholar]
  12. C. K. Maurya and D. Toshniwal. “Anomaly detection in nuclear power plant data using support vector data description.” In Proceedings of the 2014 IEEE Students’ Technology Symposium, pp. 82–86. IeEe (2014). [Google Scholar]
  13. D. M. Tax and R. P. Duin. “Support vector data description.” Machine learning, volume 54(1), pp. 45–66 (2004). [Google Scholar]
  14. Y. LeCun, Y. Bengio, and G. Hinton. “Deep learning.” nature, volume 521(7553), p. 436 (2015). [Google Scholar]
  15. F. Caliva, F. S. De Ribeiro, A. Mylonakis, C. Demaziere, P. Vinai, G. Leontidis, and S. Kollias. “A deep learning approach to anomaly detection in nuclear reactors.” In 2018 International Joint Conference on Neural Networks (IJCNN), pp.1–8. IEEE (2018). [Google Scholar]
  16. T. Tagaris, G. Ioannou, M. Sdraka, G. Alexandridis, and A. Stafylopatis. “Putting Together Wavelet-Based Scaleograms and Convolutional Neural Networks for Anomaly Detection in Nuclear Reactors.” In Proceedings of the 2019 3rd International Conference on Advances in.Artificial Intelligence, ICAAI 2019, p. 237243. Association for Computing Machinery, New York, NY, USA (2019). URL https://doi.org/10.1145/3369114.3369121. [Google Scholar]
  17. C.M.Bishop. Pattern recognition and machine learning. springer (2006). [Google Scholar]
  18. P.J.Werbos et al. “Backpropagation through time: what it does and how to do it.” Proceedings of the IEEE, volume 78(10), pp.1550–1560 (1990). [Google Scholar]
  19. S. Hochreiter and J. Schmidhuber. “Long short-term memory.” Neural computation, volume 9(8), pp.1735–1780 (1997). [Google Scholar]
  20. D. Chionis, A. Dokhane, L. Belblidia, M. Pecchia, G. Girardin, H. Ferroukhi, and A. Pautz. “SIMULATE-3K analyses of neutron noise response to fuel assembly vibrations and thermal- hydraulics parameters fluctuations.” In M&C 2017-International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering, atJeju, Korea (2017). [Google Scholar]
  21. G. Grandi. “SIMULATE-3K Input specification (SSP-98/12, Rev. 17).” (2015). [Google Scholar]
  22. T. Kozlowski and T. J. Downar. “OECD/NEA and US NRC PWR MOX/UO2 core transient benchmark - Final Specifications.” techreport Revision 2, OECD Nuclear Energy Agency, Nuclear Science Committee (2003). URL https://engineering.purdue.edu/PARCS/MOX_Benchmark/Benchmark_Description/mox_bench_spec.pdf. [Google Scholar]
  23. P. Bernitt. In-Core Neutron Noise Analysis for Diagnosis of Fuel Assembly Vibrations. Chalmers University of Technology (2008). [Google Scholar]
  24. D. P. Kingma and J. Ba. “Adam: A method for stochastic optimization.” arXiv preprint arXiv:14126980 (2014). [Google Scholar]
  25. A. Kent, M. M. Berry, F. U. Luehrs Jr, and J. W. Perry. “Machine literature searching VIII. Operational criteria for designing information retrieval systems.” American documentation, volume 6(2), pp. 93–101 (1955). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.