Open Access
Issue
EPJ Web Conf.
Volume 250, 2021
DYMAT 2021 - 13th International Conference on the Mechanical and Physical Behaviour of Materials under Dynamic Loading
Article Number 01008
Number of page(s) 6
Section Experimental Techniques
DOI https://doi.org/10.1051/epjconf/202125001008
Published online 08 September 2021
  1. D. Fernández-Fdz, J. López-Puente, and R. Zaera, ‘Prediction of the behaviour of CFRPs against high-velocity impact of solids employing an artificial neural network methodology’, Composites Part A: Applied Science and Manufacturing, vol. 39, no. 6, pp. 989–996, Jun. 2008, doi: 10.1016/j.compositesa.2008.03.002. [CrossRef] [Google Scholar]
  2. T. Mitrevski, I. H. Marshall, R. Thomson, R. Jones, and B. Whittingham, ‘The effect of impactor shape on the impact response of composite laminates’, Composite Structures, vol. 67, no. 2, pp. 139–148, Feb. 2005, doi: 10.1016/j.compstruct.2004.09.007. [CrossRef] [Google Scholar]
  3. J. A. Artero-Guerrero, J. Pernas-Sánchez, J. Martín-Montal, D. Varas, and J. LópezPuente, ‘The influence of laminate stacking sequence on ballistic limit using a combined Experimental/FEM/Artificial Neural Networks (ANN) methodology’, Composite Structures, vol. 183, no. 1, 2017, doi: 10.1016/j.compstruct.2017.03.068. [Google Scholar]
  4. J. A. Artero-Guerrero, J. Pernas-Sánchez, J. López-Puente, and D. Varas, ‘Experimental study of the impactor mass effect on the low velocity impact of carbon/epoxy woven laminates’, Composite Structures, vol. 133, pp. 774–781, 2015, doi: 10.1016/j.compstruct.2015.08.027. [CrossRef] [Google Scholar]
  5. R. Hedayati and S. Ziaei-Rad, ‘A new bird model and the effect of bird geometry in impacts from various orientations’, Aerospace Science and Technology, vol. 28, no. 1, pp. 9–20, Jul. 2013, doi: 10.1016/j.ast.2012.09.002. [CrossRef] [Google Scholar]
  6. J. Pernas-Sánchez, J. Artero-Guerrero, D. Varas, and J. López-Puente, ‘Artificial bird strike on Hopkinson tube device: Experimental and numerical analysis’, International Journal of Impact Engineering, vol. 138, p. 103477, Apr. 2020, doi: 10.1016/J.IJIMPENG.2019.103477. [CrossRef] [Google Scholar]
  7. J. D. Tippmann, H. Kim, and J. D. Rhymer, ‘Experimentally validated strain rate dependent material model for spherical ice impact simulation’, International Journal of Impact Engineering, vol. 57, pp. 43–54, Jul. 2013, doi: 10.1016/j.ijimpeng.2013.01.013. [CrossRef] [Google Scholar]
  8. F. Allaeys, G. Luyckx, W. Van Paepegem, and J. Degrieck, ‘Characterization of real and substitute birds through experimental and numerical analysis of momentum, average impact force and residual energy in bird strike on three rigid targets: A flat plate, a wedge and a splitter’, International Journal of Impact Engineering, vol. 99, pp. 1–13, Jan. 2017, doi: 10.1016/j.ijimpeng.2016.08.009. [CrossRef] [Google Scholar]
  9. J. Pernas-Sánchez, J. A. Artero-Guerrero, D. Varas, and J. López-Puente, ‘Analysis of Ice Impact Process at High Velocity’, Exp Mech, vol. 55, no. 9, pp. 1669–1679, Nov. 2015, doi: 10.1007/s11340-015-0067-4. [CrossRef] [Google Scholar]
  10. M. A. Lavoie, A. Gakwaya, M. N. Ensan, D. G. Zimcik, and D. Nandlall, ‘Bird’s substitute tests results and evaluation of available numerical methods’, International Journal of Impact Engineering, vol. 36, no. 10, pp. 1276–1287, Oct. 2009, doi: 10.1016/j.ijimpeng.2009.03.009. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.