Open Access
Issue
EPJ Web Conf.
Volume 250, 2021
DYMAT 2021 - 13th International Conference on the Mechanical and Physical Behaviour of Materials under Dynamic Loading
Article Number 01010
Number of page(s) 10
Section Experimental Techniques
DOI https://doi.org/10.1051/epjconf/202125001010
Published online 08 September 2021
  1. T.J. Cloetea, M. Stander: Refinement of the wedge bar technique for compression tests at intermediate strain rates, Proceeding EPJ Web of Conferences 26, 01025, DYMAT 2012 [CrossRef] [Google Scholar]
  2. L.L. Wang: Foundations of Stress Waves, Elsevier, 2007 [Google Scholar]
  3. X. Xiao: Dynamic tensile testing of plastic materials, Polymer Testing 27, 164-178 (2008) [CrossRef] [Google Scholar]
  4. S. Hill, M. Pinnell, A. Minch: Standardization of High Strain Rate Tensile Testing of Polymers, paper presentation, ANTEC, Boston, 2005 [Google Scholar]
  5. B. Yan, Y. Kuriyama, A. Uenishi, D. Cornette, M. Borsutzki, C. Wong: Recommended Practice for Dynamic Testing for Sheet Steels-Development and Round Robin Tests. SAE Transactions 155, 147–157 (2006) [Google Scholar]
  6. D. Bruce, D. Matlock, J. Spee, A. De: Assesment of strain-rate dependent tensile properties of automotive sheet steels. SAE Technical paper 2004-01-0507 [Google Scholar]
  7. W. Böhme: FAT-Richtlinie Dynamische Werkstoffkennwerte für die Crashsimulation. Mater Test 50, 199–205 (2008), https://doi.org/10.3139/120.100865 [CrossRef] [Google Scholar]
  8. P. Verleysen: Numerical study of the influence of the specimen geometry on split Hopkinson bar tensile test results, Latin American Journal of Solids and Structures 6, 285-298 (2009) [Google Scholar]
  9. J. Li and X.F. Fang: Stress Wave Analysis and Optical Force Measurement of ServoHydraulic Machine for High Strain Rate Testing, Exp Mech. 54, 1497-1501 (2014) [CrossRef] [Google Scholar]
  10. X.F. Fang and R. Grams: A Novel Oscillation-Free Force Measurement for the Determination of Material Properties during High-Speed Tests, ASTM Journal of Testing and Evaluation, (2019), doi: 10.1520/JTE20180887 [Google Scholar]
  11. X. F. Fang, „A one-dimensional stress wave model for analytical design and optimization of oscillation-free force measurement in high-speed tensile test specimens”, International Journal of Impact Engineering, 149, 103770 (2021), https://doi.org/10.1016/j.ijimpeng.2020.103770 [CrossRef] [Google Scholar]
  12. W. Johnson, Impact Strength of Materials, Edward Arnold, London, 1972 [Google Scholar]
  13. A. Maurel, J-F. Mercier and F. Lund, Elastic wave propagation through a random array of dislocations, PHYSICAL REVIEW B 70, 024303 (2004), DOI: 10.1103/PhysRevB.70.024303 [CrossRef] [Google Scholar]
  14. S. Tasdemirci and I.W. Hall, The effects of plastic deformation on stress wave propagation in multi-layer materials, Int J Impact Eng, 34, 1797-1813 (2007) [CrossRef] [Google Scholar]
  15. A. Maurel, V. Pagneux, F. Barra and F. Lund, Wave propagation through a random array of pinned dislocations: Velocity change and attenuation in a generalized Granato and Lücke theory. PHYSICAL REVIEW B 72, 174111 (2005) DOI: 10.1103/PhysRevB.72.174111 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.