Open Access
Issue
EPJ Web Conf.
Volume 250, 2021
DYMAT 2021 - 13th International Conference on the Mechanical and Physical Behaviour of Materials under Dynamic Loading
Article Number 06010
Number of page(s) 6
Section Non Metallic Materials
DOI https://doi.org/10.1051/epjconf/202125006010
Published online 09 September 2021
  1. K. S. Novoselov, et al., Electric Field Effect in Atomically Thin Carbon Films. Science (80) 306, 666–669 (2004). [Google Scholar]
  2. D. Saini, Synthesis and functionalization of graphene and application in electrochemical biosensing. Nanotechnol. Rev. (2016). [Google Scholar]
  3. C. Lee, X. Wei, J. W. Kysar, J. Hone, Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science (80-. ). 321, 385–388 (2008). [Google Scholar]
  4. H. Hu, Z. Zhao, W. Wan, Y. Gogotsi, J. Qiu, Ultralight and Highly Compressible Graphene Aerogels. Adv. Mater. 25, 2219–2223 (2013). [PubMed] [Google Scholar]
  5. Y. Xu, K. Sheng, C. Li, G. Shi, Self-Assembled Graphene Hydrogel via a One-Step Hydrothermal Process. ACS Nano 4, 4324–4330 (2010). [PubMed] [Google Scholar]
  6. L. Qiu, J. Z. Liu, S. L. Y. Chang, Y. Wu, D. Li, Biomimetic superelastic graphenebased cellular monoliths. Nat. Commun. (2012) https:/doi.org/10.1038/ncomms2251. [Google Scholar]
  7. G. Gorgolis, C. Galiotis, Graphene aerogels: a review. 2D Mater. 4, 032001 (2017). [Google Scholar]
  8. S. S. KISTLER, Coherent Expanded Aerogels and Jellies. Nature 127, 741–741 (1931). [Google Scholar]
  9. X. Zhang, et al., Mechanically strong and highly conductive graphene aerogel and its use as electrodes for electrochemical power sources. J. Mater. Chem. 21, 6494 (2011). [Google Scholar]
  10. S. M. Jones, Aerogel: Space exploration applications. J Sol-Gel Sci Techn 40, 351–357 (2006). [Google Scholar]
  11. Y. Kitazawa, et al., Hypervelocity impact experiments on aerogel dust collector. J. Geophys. Res. E Planets 104, 22035–22052 (1999). [Google Scholar]
  12. M. A. Worsley, et al., Mechanically robust 3D graphene macroassembly with high surface area. Chem. Commun. (2012) https:/doi.org/10.1039/c2cc33979j. [Google Scholar]
  13. S. Kabiri, D. N. H. Tran, T. Altalhi, D. Losic, Outstanding adsorption performance of graphene–carbon nanotube aerogels for continuous oil removal. Carbon N. Y. 80, 523–533 (2014). [Google Scholar]
  14. T. Woignier, J. Phalippou, Mechanical strength of silica aerogels. J. Non. Cryst. Solids 100, 404–408 (1988). [Google Scholar]
  15. Y. Zhao, et al., Highly Compression-Tolerant Supercapacitor Based on Polypyrrole-mediated Graphene Foam Electrodes. Adv. Mater. 25, 591–595 (2013). [PubMed] [Google Scholar]
  16. A. H. Alaoui, T. Woignier, G. W. Scherer, J. Phalippou, Comparison between flexural and uniaxial compression tests to measure the elastic modulus of silica aerogel. J. Non. Cryst. Solids 354, 4556–4561 (2008). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.