Open Access
EPJ Web Conf.
Volume 251, 2021
25th International Conference on Computing in High Energy and Nuclear Physics (CHEP 2021)
Article Number 02003
Number of page(s) 7
Section Distributed Computing, Data Management and Facilities
Published online 23 August 2021
  1. J. Shiers, The Worldwide LHC Computing Grid (Worldwide LCG), Comput. Phys. Commun. 177 (2007) 219–223, doi: 10.1016/j.cpc.2007.02.021 [Google Scholar]
  2. J. Barranco et al., LHC@Home: A BOINC-based volunteer computing infrastructure for physics studies at CERN, Open Eng. 7 (2017) no.1, 378–392, doi: 10.1515/eng-2017-0042 [Google Scholar]
  3. CERN against COVID-19, (2021), accessed: 2021-05-12 [Google Scholar]
  4. WHO: Coronavirus disease (COVID-19) pandemic, (2021), accessed: 2021-05-12 [Google Scholar]
  5. Coronavirus data resources at EMBL-EBI, (2021), accessed: 2021-05-12 [Google Scholar]
  6. Folding@Home, (2021), accessed: 2021-05-12 [Google Scholar]
  7. Rosetta@Home, (2021), accessed: 2021-05-12 [Google Scholar]
  8. Gene, (2021), accessed: 2021-05-12 [Google Scholar]
  9. BOINC@TACC, (2021), accessed: 2021-05-12 [Google Scholar]
  10. Open Pandemics: COVID-19, (2021), accessed: 2021-05-12 [Google Scholar]
  11. ATLAS Collaboration, The ATLAS Experiment at the CERN Large Hadron Collider, JINST 3 (2008) S08003, doi: 10.1088/1748-0221/3/08/S08003 [Google Scholar]
  12. V.S. Pande et al., Everything you wanted to know about Markov State Models but were afraid to ask, Methods (San Diego, Calif.) vol. 52,1 (2010) 99–105, doi: 10.1016/j.ymeth.2010.06.002 [Google Scholar]
  13. M. Michelotto et al., A comparison of HEP code with SPEC1 benchmarks on multi-core worker nodes, J. Phys. Conf. Ser. 219 (2010) 052009, doi: 10.1088/1742-6596/219/5/052009 [Google Scholar]
  14. J. Blomer et al., Status and future perspectives of CernVM-FS, J. Phys. Conf. Ser. 396 (2012) 052013, doi: 10.1088/1742-6596/396/5/052013 [Google Scholar]
  15. A.C. Forti, L. Heinrich and M. Guth, Hardware accelerated ATLAS workloads on the WLCG Grid, J. Phys. Conf. Ser. 1525 (2020) no.1, 012059, doi: 10.1088/1742-6596/1525/1/012059 [Google Scholar]
  16. L. Heinrich, M. Feickert and M. Lassnig. (2021, January 29). Lukasheinrich/folding-at-home-docker. Zenodo, doi: 0.5281/zenodo.4479723 [Google Scholar]
  17. G.A. Stewart et al., ATLAS Job Transforms: A data driven workflow engine, J. Phys. Conf. Ser. 513 (2014) 032094, doi: 10.1088/1742-6596/513/3/032094 [Google Scholar]
  18. M. Barisits et al., Rucio: Scientific data management, Comput. Softw. Big Sci. 3 (2019) 11, doi: 10.1007/s41781-019-0026-3 [Google Scholar]
  19. S. Ballestrero et al., Evolution and experience with the ATLAS simulation at Point 1 Project, J. Phys. Conf. Ser. 898 (2017) no.8, 082012, doi: 10.1088/1742-6596/898/8/082012 [Google Scholar]
  20. Folding@Home Team: CERN & LHC Computing, (2021), accessed: 2021-05-12 [Google Scholar]
  21. New COVID-19 small molecule screening simulations are running on full Folding@Home, (2021), accessed: 2021-05-12 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.