Open Access
EPJ Web Conf.
Volume 251, 2021
25th International Conference on Computing in High Energy and Nuclear Physics (CHEP 2021)
Article Number 02009
Number of page(s) 11
Section Distributed Computing, Data Management and Facilities
Published online 23 August 2021
  1. A.M. Beltre, P. Saha, M. Govindaraju, A. Younge, R.E. Grant, Enabling HPC workloads on cloud infrastructure using Kubernetes container orchestration mechanisms, in 2019 IEEE/ACM International Workshop on Containers and New Orchestration Paradigms for Isolated Environments in HPC (CANOPIE-HPC) (IEEE, 2019), pp. 11–20 [Google Scholar]
  2. M. Orzechowski, B. Balis, K. Pawlik, M. Pawlik, M. Malawski, Transparent deployment of scientific workflows across clouds-kubernetes approach, in 2018 IEEE/ACM International Conference on Utility and Cloud Computing Companion (UCC Companion) (IEEE, 2018), pp. 9–10 [Google Scholar]
  3. B. Kiyana, T. Vardanega, DevOps meets dynamic orchestration, in International Workshop on Software Engineering Aspects of Continuous Development and New Paradigms of Software Production and Deployment (Springer, 2018), pp. 142–154 [Google Scholar]
  4. ATLAS Distributed Computing, (2021), accessed: 2021-01-28 [Google Scholar]
  5. OKD - The Community Distribution of Kubernetes that powers Red Hat OpenShift, (2021), accessed: 2021-06-17 [Google Scholar]
  6. T. Korchuganova, A. Alekseev, S. Padolski, T. Wenaus, A. Klimentov, The ATLAS BigPanDA Monitoring System Architecture (CEUR Workshop Proceedings, 2018) [Google Scholar]
  7. A. Alekseev, A. Klimentov, T. Korchuganova, S. Padolski, T. Wenaus et al., ATLAS BigPanDA monitoring, in Journal of Physics: Conference Series (IOP Publishing, 2018), Vol. 1085, p. 032043 [Google Scholar]
  8. S. Padolski, T. Korchuganova, T. Wenaus, M. Grigorieva, A. Alexeev, M. Titov, A. Klimentov, Data visualization and representation in ATLAS BigPanDA monitoring (Scientific Visualization, 2018), Vol. 10, pp. 69–76 [Google Scholar]
  9. I. Vukotic, R. Gardner, D. Barberis, F. Legger, ATLAS Analytics and Machine Learning Platforms (CHEP, 2018) [Google Scholar]
  10. A. Radovic, M. Williams, D. Rousseau, M. Kagan, D. Bonacorsi, A. Himmel, A. Aurisano, K. Terao, T. Wongjirad, Machine learning at the energy and intensity frontiers of particle physics (Nature Publishing Group, 2018), Vol. 560, pp. 41–48 [Google Scholar]
  11. S. Campana et al., ATLAS Distributed Computing in LHC Run2, in Journal of Physics: Conference Series (IOP Publishing, 2015), Vol. 664, p. 032004 [Google Scholar]
  12. M. Zaharia, A. Chen, A. Davidson, A. Ghodsi, S.A. Hong, A. Konwinski, S. Murching, T. Nykodym, P. Ogilvie, M. Parkhe et al., Accelerating the Machine Learning Lifecycle with MLflow. (IEEE Data Eng. Bull., 2018), Vol. 41, pp. 39–45 [Google Scholar]
  13. C. Serfon, M. Barisits, T. Beermann, V. Garonne, L. Goossens, M. Lassnig, A. Nairz, R. Vigne et al., Rucio, the next-generation Data Management system in ATLAS, Elsevier (ScienceDirect, 2016), Vol. 273, pp. 969–975 [Google Scholar]
  14. B. Burns, D. Oppenheimer, Design patterns for container-based distributed systems, in 8th {USENIX} Workshop on Hot Topics in Cloud Computing (HotCloud 16) (2016) [Google Scholar]
  15. F. Berghaus, K. Casteels, A. Di Girolamo, C. Driemel, M. Ebert, F. Furano, F. Galindo, M. Lassnig, C. Leavett-Brown, M. Paterson et al., Federating distributed storage for clouds in ATLAS, in Journal of Physics: Conference Series (IOP Publishing, 2018), Vol. 1085, p. 032027 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.