Open Access
Issue
EPJ Web Conf.
Volume 251, 2021
25th International Conference on Computing in High Energy and Nuclear Physics (CHEP 2021)
Article Number 02012
Number of page(s) 8
Section Distributed Computing, Data Management and Facilities
DOI https://doi.org/10.1051/epjconf/202125102012
Published online 23 August 2021
  1. M. Mambelli, P. Mhashilkar, D. Box, I. Sfiligoi, D. Strain, et al., (2020) glideinWMS/glideinwms. Zenodo. http://doi.org/10.5281/zenodo.1309678, accessed: 2021-06-06 [Google Scholar]
  2. M. Mambelli, T. Hein, GlideinMonitor. United States. https://doi.org/10.2172/1605567 accessed: 2021-06-06 [Google Scholar]
  3. J. Vasa, P Modi, Review of Different Privacy Preserving Techniques in PPDP , International Journal of Engineering Trends and Technology, IJETT, 59, 5 (2018), https://arxiv.org/pdf/1808.04088.pdf, accessed: 2021-06-06 [Google Scholar]
  4. K. Rajendran, M. Jayabalan, M.E. Rana, A Study on k-anonymity, l-diversity and t-closeness Techniques focusing Medical Data, International Journal of Computer Science and Network Security, IJCSNS, 17, 12 (2017) [Google Scholar]
  5. P. Samarati, L. Sweeney, Protecting privacy when disclosing information: K-anonymity and its enforcement through generalization and suppression. (2007) [Online] Available at: https://epic.org/privacy/reidentrfication/SamaratiSweeneypaper.pdf, accessed: 2021-06-06 [Google Scholar]
  6. L. Sweeney L. Achieving k-Anonymity Privacy Protection Using Generalization And Suppression, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, IJUFKS 10(5), pp. 571–588. (2002) doi: 10.1142/s021848850200165x. [Google Scholar]
  7. A. Machanavajjhala, D. Kifer, J. Gehrke and M. Venkitasubramaniam, L -diversity: privacy beyond k-anonymity, ACM Transactions on Knowledge Discovery from Data, 1(1). (2007) doi: 10.1145/1217299.1217302. [Google Scholar]
  8. N. Li, T. Li and S. Venkatasubramanian, Tcloseness: Privacy beyond k-anonymity and l-diversity, ICDE 2007 IEEE 23rd International Conference on Data Engineering, (2007) doi: 10.1109/icde.2007.367856. [Google Scholar]
  9. D. Bikel, R. Schwartz, R. Weischedel, An Algorithm that Learns What's in a Name, Machine Learning, 34 (1-3) pp. 211–231 (1999) https://link.springer.com/article/10.1023/A:1007558221122, accessed: 2021-06-06 [Google Scholar]
  10. F. Legger, V. Kuznetsov, C. Ariza Porras, C. Uzunoglu, R. Indra, The evolution of the CMS monitoring infrastructure, CHEP2021, to appear in the proceedings. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.