Open Access
Issue |
EPJ Web Conf.
Volume 251, 2021
25th International Conference on Computing in High Energy and Nuclear Physics (CHEP 2021)
|
|
---|---|---|
Article Number | 03009 | |
Number of page(s) | 10 | |
Section | Offline Computing | |
DOI | https://doi.org/10.1051/epjconf/202125103009 | |
Published online | 23 August 2021 |
- Opticks Repository, https://bitbucket.org/simoncblyth/opticks/ [Google Scholar]
- Opticks References, https://simoncblyth.bitbucket.io [Google Scholar]
- Opticks Group, https://groups.io/g/opticks [Google Scholar]
- S. Blyth, EPJ Web Conf. 245, 11003 (2020) https://doi.org/10.1051/epjconf/202024511003 [Google Scholar]
- S. Blyth, EPJ Web Conf. 214, 02027 (2019) https://doi.org/10.1051/epjconf/201921402027 [Google Scholar]
- Blyth Simon C 2017 J. Phys.: Conf. Ser. 898 042001 https://doi.org/10.1088/1742-6596/898/4/042001 [CrossRef] [Google Scholar]
- S. Agostinelli, J. Allison, K. Amako, J. Apostolakis, H. Araujo, P. Arce et al., Nucl. Instrum. Methods. Phys. Res. A 506, 250 (2003) [Google Scholar]
- J. Allison, K. Amako, J. Apostolakis, H. Araujo, P. Dubois, M. Asai et al., IEEE Trans Nucl Sci, 53, 270 (2006) [Google Scholar]
- J. Allison, K. Amako, J. Apostolakis, P. Arce, M. Asai, T. Aso et al., Nucl. Instrum. Methods. Phys. Res. A 835, 186 (2016) [Google Scholar]
- OptiX: a general purpose ray tracing engine S. Parker, J. Bigler, A. Dietrich, H. Friedrich, J. Hoberock et al., ACM Trans. Graph.: Conf. Series 29, 66 (2010) [Google Scholar]
- OptiX introduction, https://developer.nvidia.com/optix [Google Scholar]
- OptiX API, http://raytracing-docs.nvidia.com/optix/index.html [Google Scholar]
- OptiX7 https://developer.nvidia.com/blog/how-to-get-started-with-optix-7/ [Google Scholar]
- The Application of SNiPER to the JUNO Simulation, T. Lin et al., J.Phys.Conf.Ser. 898 042029 (2017) https://doi.org/10.1088/1742-6596/898/4/042029 [Google Scholar]
- Neutrino physics with JUNO F. An et al., J. Phys. G. 43, 030401 (2016) [Google Scholar]
- NVIDIARTX, https://developer.nvidia.com/rtx [Google Scholar]
- Understanding Throughput Oriented Architectures M. Garland, D.B. Kirk, Commun. ACM 53(11), 58 (2010) [Google Scholar]
- cuRAND, http://docs.nvidia.com/cuda/curand/index.html [Google Scholar]
- The NumPy array: a structure for efficient numerical computation S. Van der Walt, S. Colbert, G. Varoquaux, Comput. Sci. Eng. 13, 22 (2011) [Google Scholar]
- Chapter 26 - Thrust: A Productivity-Oriented Library for CUDA N. Bell, J. Hoberock, GPU Computing Gems Jade Edition, (2012), pp 359–371 [Google Scholar]
- Shared GPU/CPU “CSGFoundry” geometry model, https://github.com/simoncblyth/CSG [Google Scholar]
- Converter of Opticks/GGeo geometry to “CSGFoundry” model, https://github.com/simoncblyth/CSG_GGeo [Google Scholar]
- NVIDIA OptiX 7 and pre-7 renderer of “CSGFoundry” geometry, https://github.com/simoncblyth/CSGOptiX [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.