Open Access
Issue
EPJ Web Conf.
Volume 251, 2021
25th International Conference on Computing in High Energy and Nuclear Physics (CHEP 2021)
Article Number 03065
Number of page(s) 12
Section Offline Computing
DOI https://doi.org/10.1051/epjconf/202125103065
Published online 23 August 2021
  1. D. Contardo, M. Klute, J. Mans, L. Silvestris, J. Butler, Tech. Rep. CERN-LHCC- 2015-010. LHCC-P-008. CMS-TDR-15-02, Geneva (2015), upgrade Project Leader Deputies: Lucia Silvestris (INFN-Bari), Jeremy Mans (University of Minnesota) Additional contacts: Lucia.Silvestris@cern.ch, Jeremy.Mans@cern.ch, https://cds. cern.ch/record/2020886 [Google Scholar]
  2. S. Amrouche, L. Basara, P. Calafiura, V. Estrade, S. Farrell, D.R. Ferreira, L. Finnie, N. Finnie, C. Germain, V.V. Gligorov et al., The Springer Series on Challenges in Machine Learning p. 231–264 (2019) [Google Scholar]
  3. S. Farrell, P. Calafiura, M. Mudigonda, Prabhat, D. Anderson, J.R. Vlimant, S. Zheng, J. Bendavid, M. Spiropulu, G. Cerati et al., Novel deep learning methods for track reconstruction (2018), 1810.06111 [Google Scholar]
  4. N. Choma, D. Murnane, X. Ju, P. Calafiura, S. Conlon, S. Farrell, Prabhat, G., Cerati, L., Gray, T. Klijnsma et al., Track seeding and labelling with embedded-space graph neural networks (2020), 2007.00149 [Google Scholar]
  5. C. Tüysüz, F. Carminati, B. Demirköz, D. Dobos, F. Fracas, K. Novotny, K. Potamianos, S. Vallecorsa, J.R. Vlimant, EPJ Web of Conferences 245, 09013 (2020) [Google Scholar]
  6. C. Tüysüz, K. Novotny, C. Rieger, F. Carminati, B. Demirköz, D. Dobos, F. Fracas, K. Potamianos, S. Vallecorsa, J.R. Vlimant, Performance of particle tracking using a quantum graph neural network (2021), 2012.01379 [Google Scholar]
  7. X. Ju, S. Farrell, P. Calafiura, D. Murnane, Prabhat, L. Gray, T. Klijnsma, K. Pedro, G. Cerati, J. Kowalkowski et al., Graph neural networks for particle reconstruction in high energy physics detectors (2020), 2003.11603 [Google Scholar]
  8. J. Preskill, Quantum 2, 79 (2018) [Google Scholar]
  9. M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information: 10th Anniversary Edition (Cambridge University Press, 2010) [Google Scholar]
  10. V. Bergholm, J. Izaac, M. Schuld, C. Gogolin, M.S. Alam, S. Ahmed, J.M. Arrazola, C. Blank, A. Delgado, S. Jahangiri et al., Pennylane: Automatic differentiation of hybrid quantum-classical computations (2020), 1811.04968 [Google Scholar]
  11. D. Rousseau, S. Amrouche, P. Calafiura, V. Estrade, S. Farrell, C. Germain, V. Gligorov, T. Golling, H. Gray, I. Guyon et al., The TrackML challenge, in NIPS 2018 - 32nd Annual Conference on Neural Information Processing Systems (Montreal, Canada, 2018), pp. 1–23, https://hal.inria.fr/hal-01745714 [Google Scholar]
  12. S. Sim, P.D. Johnson, A. Aspuru-Guzik, Advanced Quantum Technologies 2, 1900070 (2019) [Google Scholar]
  13. D.A. Meyer, N.R. Wallach, Journal of Mathematical Physics 43, 4273 (2002), https://doi.Org/10.1063/1.1497700 [Google Scholar]
  14. A. Abbas, D. Sutter, C. Zoufal, A. Lucchi, A. Figalli, S. Woerner, The power of quantum neural networks (2020), 2011.00027 [Google Scholar]
  15. S. Lloyd, M. Schuld, A. Ijaz, J. Izaac, N. Killoran, Quantum embeddings for machine learning (2020), 2001.03622 [Google Scholar]
  16. A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., Pytorch: An imperative style, high-performance deep learning library (2019), 1912.01703 [Google Scholar]
  17. G. Aleksandrowicz, T. Alexander, P. Barkoutsos, L. Bello, Y. Ben-Haim, D. Bucher, F.J. Cabrera-Hernández, J. Carballo-Franquis, A. Chen, C.F. Chen et al. (2019) [Google Scholar]
  18. D.P. Kingma, J. Ba, Adam: A method for stochastic optimization (2017), 1412.6980 [Google Scholar]
  19. M. Cerezo, P.J. Coles, Impact of barren plateaus on the hessian and higher order derivatives (2020), 2008.07454 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.