Open Access
Issue |
EPJ Web Conf.
Volume 251, 2021
25th International Conference on Computing in High Energy and Nuclear Physics (CHEP 2021)
|
|
---|---|---|
Article Number | 04027 | |
Number of page(s) | 12 | |
Section | Online Computing | |
DOI | https://doi.org/10.1051/epjconf/202125104027 | |
Published online | 23 August 2021 |
- J.M. Butterworth, A.R. Davison, M. Rubin, G.P. Salam, Physical review letters 100, 242001 (2008) [Google Scholar]
- W. Skiba, D. Tucker-Smith, Physical Review D 75, 115010 (2007) [Google Scholar]
- V. Khachatryan, A.M. Sirunyan, A. Tumasyan, W. Adam, T. Bergauer, M. Dragicevic, J. Erö, C. Fabjan, M. Friedl, R. Fruehwirth et al., Journal of High Energy Physics 2014, 173 (2014) [Google Scholar]
- G. Aad, B. Abbott, J. Abdallah, R. Aben, M. Abolins, O. AbouZeid, H. Abramowicz, H. Abreu, R. Abreu, Y. Abulaiti et al., Journal of High Energy Physics 2015, 1 (2015) [Google Scholar]
- D. Adams, A. Arce, L. Asquith, M. Backovic, T. Barillari, P. Berta, D. Bertolini, A. Buckley, J. Butterworth, R.C. Toro et al., The European Physical Journal C 75, 1 (2015) [Google Scholar]
- A. Abdesselam, A. Belyaev, E.B. Kuutmann, U. Bitenc, G. Brooijmans, J. Butterworth, P.B. de Renstrom, D.B. Franzosi, R. Buckingham, B. Chapleau et al., The European Physical Journal C 71, 1 (2011) [Google Scholar]
- A. Altheimer, S. Arora, L. Asquith, G. Brooijmans, J. Butterworth, M. Campanelli, B. Chapleau, A. Cholakian, J. Chou, M. Dasgupta et al., Journal of Physics G: Nuclear and Particle Physics 39, 063001 (2012) [Google Scholar]
- A. Altheimer, A. Arce, L. Asquith, J.B. Mayes, E.B. Kuutmann, J. Berger, D. Bjergaard, L. Bryngemark, A. Buckley, J. Butterworth et al., The European Physical Journal C 74, 1 (2014) [Google Scholar]
- T. Plehn, M. Spannowsky, M. Takeuchi, D. Zerwas, Journal of High Energy Physics 2010, 1 (2010) [Google Scholar]
- A.J. Larkoski, S. Marzani, G. Soyez, J. Thaler, Journal of High Energy Physics 2014, 146 (2014) [Google Scholar]
- J. Thaler, K. Van Tilburg, Journal of High Energy Physics 2011, 15 (2011) [Google Scholar]
- A.J. Larkoski, G.P. Salam, J. Thaler, Journal of High Energy Physics 2013, 108 (2013) [Google Scholar]
- D. Krohn, J. Thaler, L.T. Wang, Journal of High Energy Physics 2010, 84 (2010) [Google Scholar]
- S.D. Ellis, C.K. Vermilion, J.R. Walsh, Physical Review D 81, 094023 (2010) [Google Scholar]
- M. Dasgupta, A. Fregoso, S. Marzani, G.P. Salam, Journal of High Energy Physics 2013, 29 (2013) [Google Scholar]
- M. Dasgupta, A. Fregoso, S. Marzani, A. Powling, The European Physical Journal C 73, 1 (2013) [Google Scholar]
- M. Dasgupta, A. Powling, A. Siodmok, Journal of High Energy Physics 2015, 1 (2015) [Google Scholar]
- J. Cogan, M. Kagan, E. Strauss, A. Schwarztman, Journal of High Energy Physics 2015, 118 (2015) [Google Scholar]
- J. Pearkes, W. Fedorko, A. Lister, C. Gay, arXiv preprint arXiv:1704.02124 (2017) [Google Scholar]
- P. Baldi, K. Bauer, C. Eng, P. Sadowski, D. Whiteson, Physical Review D 93, 094034 (2016) [Google Scholar]
- S. Macaluso, D. Shih, Journal of High Energy Physics 2018, 1 (2018) [Google Scholar]
- L.G. Almeida, M. Backovic, M. Cliche, S.J. Lee, M. Perelstein, Journal of High Energy Physics 2015, 1 (2015) [Google Scholar]
- L. de Oliveira, M. Kagan, L. Mackey, B. Nachman, A. Schwartzman, Journal of High Energy Physics 2016, 1 (2016) [Google Scholar]
- D. Guest, J. Collado, P. Baldi, S.C. Hsu, G. Urban, D. Whiteson, Physical Review D 94, 112002 (2016) [Google Scholar]
- J. Barnard, E.N. Dawe, M.J. Dolan, N. Rajcic, Physical Review D 95, 014018 (2017) [Google Scholar]
- A. Butter, G. Kasieczka, T. Plehn, M. Russell, SciPost Phys 5, 028 (2018) [Google Scholar]
- P.T. Komiske, E.M. Metodiev, M.D. Schwartz, Journal of High Energy Physics 2017, 110 (2017) [Google Scholar]
- J. Lin, M. Freytsis, I. Moult, B. Nachman, Journal of High Energy Physics 2018, 1 (2018) [Google Scholar]
- G. Kasieczka, T. Plehn, A. Butter, K. Cranmer, D. Debnath, B.M. Dillon, M. Fairbairn, D.A. Faroughy, W. Fedorko, C. Gay et al., arXiv preprint arXiv:1902.09914 (2019) [Google Scholar]
- G. Kasieczka, T. Plehn, M. Russell, T. Schell, Journal of High Energy Physics 2017, 6 (2017) [Google Scholar]
- Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, Proceedings of the IEEE 86, 2278 (1998) [Google Scholar]
- M. Cacciari, G.P. Salam, G. Soyez, The European Physical Journal C 72, 1 (2012) [Google Scholar]
- A.M. Sirunyan et al. (CMS), Comput. Softw. Big Sci. 4, 10 (2020), 1912.S6S46 [Google Scholar]
- P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, Y. LeCun, arXiv preprint arXiv:1312.6229 (2013) [Google Scholar]
- K. Zhang, Z. Zhang, Z. Li, Y. Qiao, IEEE Signal Processing Letters 23, 1499 (2016) [Google Scholar]
- L. Zhang, L. Lin, X. Liang, K. He, Is faster R-CNN doing well for pedestrian detection?, in European conference on computer vision (Springer, 2016), pp. 443—157 [Google Scholar]
- Z. Zou, Z. Shi, Y. Guo, J. Ye, arXiv preprint arXiv:1905.05055 (2019) [Google Scholar]
- L. Liu, W. Ouyang, X. Wang, P. Fieguth, J. Chen, X. Liu, M. Pietikäinen, International journal of computer vision 128, 261 (2020) [Google Scholar]
- J. Redmon, A. Farhadi, YOLO9000: better, faster, stronger, in Proceedings of the IEEE conference on computer vision and pattern recognition (2017), pp. 7263–7271 [Google Scholar]
- J. Redmon, S. Divvala, R. Girshick, A. Farhadi, You only look once: Unified, real-time object detection, in Proceedings ofthe IEEE conference on computer vision and pattern recognition (2016), pp. 779–788 [Google Scholar]
- C.Y. Fu, W. Liu, A. Ranga, A. Tyagi, A.C. Berg, arXiv preprint arXiv:1701.06659 (2017) [Google Scholar]
- X. Zhou, D. Wang, P. Krähenbühl, arXiv preprint arXiv:1904.07850 (2019) [Google Scholar]
- T.Y. Lin, P. Goyal, R. Girshick, K. He, P. Dollar, Focal loss for dense object detection, in Proceedings ofthe IEEE international conference on computer vision (2017), pp. 2980–2988 [Google Scholar]
- R. Girshick, J. Donahue, T. Darrell, J. Malik, Rich feature hierarchies for accurate object detection and semantic segmentation, in Proceedings ofthe IEEE conference on computer vision and pattern recognition (2014), pp. 580–587 [Google Scholar]
- S. Ren, K. He, R. Girshick, J. Sun, arXiv preprint arXiv:1506.01497 (2015) [Google Scholar]
- R. Girshick, Fast r-cnn, in Proceedings ofthe IEEE international conference on computer vision (2015), pp. 1440–1448 [Google Scholar]
- J. Dai, Y. Li, K. He, J. Sun, arXiv preprint arXiv:1605.06409 (2016) [Google Scholar]
- H. Xu, X. Lv, X. Wang, Z. Ren, N. Bodla, R. Chellappa, Deep regionlets for object detection, in Proceedings ofthe European Conference on Computer Vision (ECCV) (2018), pp. 798–814 [Google Scholar]
- W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.Y. Fu, A.C. Berg, Ssd: Single shot multibox detector, in European conference on computer vision (Springer, 2016), pp. 21–37 [Google Scholar]
- K. Simonyan, A. Zisserman, arXiv preprint arXiv:1409.1556 (2014) [Google Scholar]
- Y. Cheng, D. Wang, P. Zhou, T. Zhang, arXiv preprint arXiv:1710.09282 (2017) [Google Scholar]
- Y. LeCun, J.S. Denker, S.A. Solla, R.E. Howard, L.D. Jackel, Optimal brain damage., in NIPs (Citeseer, 1989), Vol. 2, pp. 598–605 [Google Scholar]
- S. Han, H. Mao, W.J. Dally, arXiv preprint arXiv:1510.00149 (2015) [Google Scholar]
- C. Louizos, M. Welling, D.P. Kingma, arXiv preprint arXiv:1712.01312 (2017) [Google Scholar]
- A. Sironi, B. Tekin, R. Rigamonti, V. Lepetit, P. Fua, IEEE transactions on pattern analysis and machine intelligence 37, 94 (2014) [Google Scholar]
- E. Denton, W. Zaremba, J. Bruna, Y. LeCun, R. Fergus, arXiv preprint arXiv:1404.0736 (2014) [Google Scholar]
- M. Jaderberg, A. Vedaldi, A. Zisserman, arXiv preprint arXiv:1405.3866 (2014) [Google Scholar]
- C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, A. Rabinovich, Going deeper with convolutions, in Proceedings of the IEEE conference on computer vision and pattern recognition (2015), pp. 1–9 [Google Scholar]
- A.G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, H. Adam, arXiv preprint arXiv:1704.04861 (2017) [Google Scholar]
- F.N. Iandola, S. Han, M.W. Moskewicz, K. Ashraf, W.J. Dally, K. Keutzer, arXiv preprint arXiv:1602.07360 (2016) [Google Scholar]
- T. Cohen, M. Welling, Group equivariant convolutional networks, in International conference on machine learning (PMLR, 2016), pp. 2990–2999 [Google Scholar]
- C. Bucilua, R. Caruana, A. Niculescu-Mizil, Model compression, in Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining (2006), pp. 535–541 [Google Scholar]
- M. Courbariaux, Y. Bengio, J.P. David, arXiv preprint arXiv:1511.00363 (2015) [Google Scholar]
- M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, Y. Bengio, arXiv preprint arXiv:1602.02830 (2016) [Google Scholar]
- S. Zhou, Y. Wu, Z. Ni, X. Zhou, H. Wen, Y. Zou, arXiv preprint arXiv:1606.06160 (2016) [Google Scholar]
- M. Rastegari, V. Ordonez, J. Redmon, A. Farhadi, Xnor-net: Imagenet classification using binary convolutional neural networks, in European conference on computer vision (Springer, 2016), pp. 525–542 [Google Scholar]
- I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, Y. Bengio, The Journal of Machine Learning Research 18, 6869 (2017) [Google Scholar]
- F. Li, B. Zhang, B. Liu, arXiv preprint arXiv:1605.04711 (2016) [Google Scholar]
- C. Zhu, S. Han, H. Mao, W.J. Dally, arXiv preprint arXiv:1612.01064 (2016) [Google Scholar]
- E.H. Lee, D. Miyashita, E. Chai, B. Murmann, S.S. Wong, Lognet: Energy-efficient neural networks using logarithmic computation, in 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (IEEE, 2017), pp. 5900–5904 [Google Scholar]
- Z. Cai, X. He, J. Sun, N. Vasconcelos, Deep learning with low precision by half-wave gaussian quantization, in Proceedings ofthe IEEE conference on computer vision and pattern recognition (2017), pp. 5918–5926 [Google Scholar]
- CMS Collaboration, arXiv preprint arXiv:1609.02366 (2016) [Google Scholar]
- W. Bhimji, S.A. Farrell, T. Kurth, M. Paganini, E. Racah et al., 1085, 042034 (2018) [Google Scholar]
- CMS Collaboration, JInst 3, S08004 (2008) [Google Scholar]
- T. Sjöstrand, S. Mrenna, P. Skands, Computer Physics Communications 178, 852 (2008) [Google Scholar]
- J. De Favereau, C. Delaere, P. Demin, A. Giammanco, V. Lemaitre, A. Mertens, M. Selvaggi, D. Collaboration et al., Journal of High Energy Physics 2014, 57 (2014) [Google Scholar]
- S. Ioffe, C. Szegedy, Batch normalization: Accelerating deep network training by reducing internal covariate shift (2015), 15S2–S3167 [Google Scholar]
- E. Sari, M. Belbahri, V.P. Nia, How does batch normalization help binary training? (2020), 19S9–S9139 [Google Scholar]
- A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., PyTorch: An Imperative Style, High-Performance Deep Learning Library (2019) [Google Scholar]
- X. Glorot, Y. Bengio, Understanding the difficulty of training deep feedforward neural networks, in Proceedings of the thirteenth international conference on artificial intelligence and statistics (JMLR Workshop and Conference Proceedings, 2010), pp. 249–256 [Google Scholar]
- J. Deng, W. Dong, R. Socher, L. Li, Kai Li, Li Fei-Fei, ImageNet: A large-scale hierarchical image database, in 2009 IEEE Conference on Computer Vision and Pattern Recognition (2009), pp. 248–255 [Google Scholar]
- J. Davis, M. Goadrich, The relationship between Precision-Recall and ROC curves, in Proceedings of the 23rd international conference on Machine learning (2006), pp. 233–240 [Google Scholar]
- J. Rabbi, N. Ray, M. Schubert, S. Chowdhury, D. Chao, Remote Sensing 12, 1432 (2020) [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.