Open Access
EPJ Web Conf.
Volume 252, 2021
HINPw6 – Hellenic Institute of Nuclear Physics; 6th International Workshop; Perspectives on Nuclear Physics; From Fundamentals to Applications
Article Number 08002
Number of page(s) 8
Section Applications
Published online 10 September 2021
  1. G. A. Souliotis et al., A novel approach to medical radioisotope production using inverse kinematics: A successful production test of the theranostic radionuclide 67Cu, Appl. Radiat. Isotopes 149, 89 (2019) [Google Scholar]
  2. G. Hao et al., Copper-67 radioimmunotheranostics for simultaneous immunotherapy and immuno-SPECT, Sci. Rep. 11, 3622 (2021) [Google Scholar]
  3. O. Keinänen,Harnessing et al., 64Cu/67Cu for a theranostic approach to pretargeted radioimmunotherapy, P. Natl. Acad. Sci. 117, 28316 (2020) [CrossRef] [Google Scholar]
  4. N.A. Smith et al., The production, separation, and use of 67Cu for radioimmunotherapy: a review, Appl. Radiat. Isot. 70, 2377–2383 (2012) [Google Scholar]
  5. D. G. Medvedev et al., Development of a large scale production of 67Cu from 68Zn at the high energy proton accelerator: closing the 68Zn cycle, Appl. Radiat. Isot. 70, 423–429 (2008) [Google Scholar]
  6. T. Katabuchi et al., Production of 67Cu via the 68Zn(p,2p)67Cu reaction and recovery of 68Zn target. J. Radioanal. Nucl. Chem. 277, 467–470 (2008) [Google Scholar]
  7. G. Pupillo et al., New production cross sections for the theranostic radionuclide 67Cu. Nucl. Instrum. Methods Phys. Res. B 415, 41–47 (2018) [Google Scholar]
  8. T. Stoll et al., Excitation functions of proton induced reactions on 68Zn from threshold up to 71 MeV, with specific reference to the production of 67Cu, Radiochim. Acta 90, 309–313 (2002) [Google Scholar]
  9. K. Hilgers et al., Cross section measurements of the nuclear reactions natZn(d,x)64Cu, 66Zn(d,α)64Cu, 68Zn(p,αn)64Cu for production of 64Cu and technical developments for small scale production of 67Cu via the 70Zn(p,α)67Cu process, Appl. Radiat. Isot. 59, 343–351 (2003) [Google Scholar]
  10. D.J. Jamriska SR et al., Activation rates and chemical recovery of 67Cu produced with low energy proton irradiation of enriched 67Zn targets. J. Radioanal. Nucl. Chem. 195, 263–270 (1995) [Google Scholar]
  11. S. Kastleiner et al., Possibility of production of 67Cu at a small-sized cyclotron via the (p, α) reaction on enriched 70Zn, Radiochim. Acta 84, 107–110 (1999) [Google Scholar]
  12. R. E. Tribble et al., MARS: a momentum achromat recoil spectrometer, Nucl. Instrum. Methods A 285, 441–446 (1989) [Google Scholar]
  13. J. F. Brinkley et al., Progress in Research. Cyclotron Institute, Texas A&M University (2002-2003), p. V-9 (2009) accessible at: [Google Scholar]
  14. O. B. Tarasov, D. Bazin, LISE++: Radioactive beam production with in-flight separators, Nucl. Instrum. Methods Phys. Res. B 266, 4657–4664 (2008) [Google Scholar]
  15. G. Schiwietz et al., Improved charge state formulas, Nucl. Instrum. Methods B 175-177, 125-131 (2001) [Google Scholar]
  16. Agostinelli, S., et al., Geant4 a simulation toolkit. Nucl. Instrum. Methods Phys. Res. 506, 250–303 (2003) [Google Scholar]
  17. I. Kawrakow, Accurate condensed history Monte Carlo simulation of electron transport. I. EGSnrc, the new EGS4 version. Med. Phys. 27, 485 (2000). Kawrakow, I., Rogers, D.W.O., NRCC Report PIRS-701, NRC, Ottawa (2003) [Google Scholar]
  18. O.B. Tarasov, D.Bazin Nucl. Instrum. Methods B 266, 4657-4664 (2008); A.Gavron, Phys.Rev. C 21, 230-236 (1980) [Google Scholar]
  19. Levkovskij, Act. Cs. By Protons and Alphas, Moscow, Cross sections of medium mass nuclide activation (A=40-100) by medium energy protons and alpha-particles (E=10-50 MeV), (1991) [Google Scholar]
  20. S. Kastleiner et al., Possibility of Production of 67Cu at a Small-Sized Cyclotron via the (p,α)-Reaction on Enriched 70Zn, Radiochim. Acta 84, no. 2, 107-110 (1999) [Google Scholar]
  21. INTERNATIONAL ATOMIC ENERGY AGENCY, Nuclear Data for the Production of Therapeutic Radionuclides, Technical Reports Series No. 473, IAEA, Vienna (2012) [Google Scholar]
  22. D. Koning et al., TENDL: Complete Nuclear Data Library for Innovative Nuclear Science and Technology, Nuclear Data Sheets 155, 1-55 (2019) [Google Scholar]
  23. J. Ziegler, J. P. Biersack, M. Ziegler, SRIM: the Stopping and Range of Ions in Matter, [Google Scholar]
  24. J. Mabiala et al., Enhanced production of 99Mo in inverse kinematics heavy ion reactions, HINPw6 proceedings, EPJ-woc proceedings (article 08003 in this volume). [Google Scholar]
  25. W. P. Tan et al., New Measurement of 12C +12C Fusion Reaction at Astrophysical Energies, Phys. Rev. Lett. 124, 192702 (2020) [Google Scholar]
  26. M. Bonardi, The contribution to the nuclear data for biomedical radioisotope production from Milan Cyclotron Laboratory, Data Requirements for Medical Radioisotope Production, INDC(NDS)-193, IAEA, Vienna (1988) [Google Scholar]
  27. M. Aikawa, S. Ebata, S. Imai, Thick-target yields of radioactive targets deduced from inverse kinematics, Nucl. Instrum. Methods Phys. Res. B 353, 1–3, (2015) [Google Scholar]
  28. A.J. Koning, D. Rochman, Modern nuclear data evaluation with the TALYS code system, Nucl. Data Sheets 113 (12), 28412934 (2012) [Google Scholar]
  29. Z. Karimi et al., Experimental production and theoretical assessment of 67Cu via neutron induced reaction, Annals of Nuclear Energy 133, 665-668 (2019) [Google Scholar]
  30. M. Papa, T. Maruyama, A. Bonasera, Constrained molecular dynamics approach to fermionic systems, Phys. Rev. C 64, 024612 (2001) [Google Scholar]
  31. M. Papa, G. Giuliani and A. Bonasera, Constrained molecular dynamics II: A N-body approach to nuclear systems, J. Comput. Phys. 208, 403-415 (2005) [Google Scholar]
  32. G. Giuliani, H. Zheng, A. Bonasera, The many facets of the (non relativistic) Nuclear Equation of State, Prog. in Part. and Nucl. Phys. 76, 116 (2014) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.