Open Access
EPJ Web Conf.
Volume 253, 2021
ANIMMA 2021 – Advancements in Nuclear Instrumentation Measurement Methods and their Applications
Article Number 07003
Number of page(s) 5
Section Nuclear Fuel Cycle, Safeguards and Homeland Security
Published online 19 November 2021
  1. “AccuRad™ PRD, Personal Radiation Detector”, [Online]. Available: Accessed on: June 05, 2021. [Google Scholar]
  2. C. L. Larsson, T. Jones, “Testing a new directional gamma survey meter”, Defense R&D Canada – Ottawa, 2012, [Online]. Available: Accessed on: June 05, 2021. [Google Scholar]
  3. Y. Sato, Y. Tanifuji, Y. Terasaka, H. Usami, M. Kaburagi, K. Kawabata, et al., “Radiation imaging using a compact Compton camera inside the Fukushima Daiichi Nuclear Power Station building”, Journal of Nuclear Science and Technology, 2018, Vol. 55 No. 9, 965-970, DOI:10.1080/00223131.2018.1473171. [CrossRef] [Google Scholar]
  4. J. Jiang, K. Shimazoe, Y. Nakamura, H. Takahashi, Y. Shikaze, Y. Nishizawa, et al., “A prototype of aerial radiation monitoring system using an unmanned helicopter mounting a GAGG scintillator Compton camera”, Journal of Nuclear Science and Technology, 53:7, 1067-1075, DOI:10.1080/00223131.2015.1089796. [Google Scholar]
  5. V. Batiy, O. Stoyanov D. Fedorchenko, S. Prohoretz, M. Khazhmuradov, “Mathematical modeling to support gamma radiation angular distribution measurements”, Waste Management Symposium, Tucson, AZ (United States), January 2007; [Google Scholar]
  6. K. Kojima, T. Nakamori, D. Nemoto, S. Gunji, H. Sato, S. Ito, S. Kato, M. Yoshino, Y. Usuki, J. Kataoka, “Development of GammaRay Detector Sensitive to Source Directions using GAGG(Ce) Scintillators and MPPCs”, IEEENSS October 2016, DOI: 10.1109/NSSMIC.2016.8069923. [Google Scholar]
  7. O. Gala, M Gmara, O. P. Ivanovb, F. Laine, F. Lamadiec, C. Le Goallerc, et al., ”Development of a portable gamma camera with coded aperture”, 563(1):233-237, NIM A 563 (2006) 233–237 DOI:10.1016/j.nima.2006.01.119. [CrossRef] [Google Scholar]
  8. O. Gala Bryan V. Egner, Darren E. Holland, Larry W. Burggraf, James E. Bevins, “Development of a modular mixed-radiation directional rotating scatter mask detection system”. 987, NIM A, 2021, 164820, DOI:10.1016/j.nima.2020.164820. [CrossRef] [Google Scholar]
  9. G. Cao, B. Liu, H. Gong, H. Yu and G. Wang, “A StationarySources and Rotating-Detectors Computed Tomography Architecture for Higher Temporal Resolution and Lower Radiation Dose”, IEEE Access, vol. 2, pp. 1263-1271, 2014, DOI: 10.1109/ACCESS.2014.2363367. [CrossRef] [Google Scholar]
  10. A. Pernick, I. Orion, D. Ilzycer, H. Zafrir, “Applications of a SelfCollimating BGO Detector System to Radiological Emergency Response”, Health Phys. 1997 Jan; 72(1):136-40. DOI:10.1097/00004032-199701000-00019. [CrossRef] [PubMed] [Google Scholar]
  11. Y. Shirakawa, T. Yamano and Y. Kobayashi, “Remote sensing of nuclear accidents using a direction-finding detector, ” 2009 35th Annual Conference of IEEE Industrial Electronics, 2009, pp. 1917-1922, DOI:10.1109/IECON.2009.5414850. [CrossRef] [Google Scholar]
  12. R. Rahin, L. Moleri, A. Vdovin, A. Feigenboim, S. Margolin, S. Tarem, et al., “GALI: a gamma ray burst localizing instrument”, Proc. SPIE 11444, Space Telescopes and Instrumentation 2020: Ultraviolet to Gamma Ray, 114446E, 2020, DOI:10.1117/12.2576126. [Google Scholar]
  13. Dan Xu, Z. He, C. E. Lehner, F. Zhang, “4π Compton imaging with single 3D position sensitive CdZnTe detector”, 2004, Proceedings Volume 5540, Hard X-Ray and Gamma-Ray Detector Physics VI, DOI: [Google Scholar]
  14. Daniel W. Mundy and Michael G. Herman, “Uncertainty analysis of a Compton camera imaging system for radiation therapy dose reconstruction”, 2010, American Association of Physicists in Medicine, DOI: 10.1118/1.3399777. [Google Scholar]
  15. P. Arce. P. Rato, M. Canadas, and J.I. Lagares, “GAMOS: A Geant4-based easy and flexible framework for nuclear medicine applications, ” IEEE Nuclear Science Symposium Conference Record, pp. 3162-3168, 2008. [Google Scholar]
  16. S. J. Wilderman, N.H. Clinthorne, J.A. Fessler, W. L. Rogers, “ListMode Maximum Likelihood Reconstruction of Compton Scatter Camera Images in Nuclear Medicine”, 1998, IEEE Nuclear Science Symposium and Medical Imaging Conference, DOI: 10.1109/NSSMIC.1998.773871. [Google Scholar]
  17. F. Hueso-Gonzalez, A. K. Biegun, P. Dendooven, W. Enghardt, F. Fiedler, C. Golnik, at. al., “List-Mode Maximum Likelihood Reconstruction of Compton Scatter Camera Images in Nuclear Medicine”, 2015 JINST 10 P09015, DOI: [CrossRef] [Google Scholar]
  18. T. Takahashi, M. Kokubun, K. Mitsuda, R. L. Kelley, T. Ohashi, F. Aharonian, et. al., “The ASTRO-H X-ray Astronomy Satellite”, 2018, J. of Astronomical Telescopes, Instruments, and Systems, 4(2), 021402, DOI: [CrossRef] [Google Scholar]
  19. S. H. Park, J. H. Ha, J. H. Lee, H. S. Kim, Y. H. Cho, et. al. “Effect of Temperature on the Performance of a CZT Radiation Detector”, Journal of the Korean Physical Society, Vol. 56, No. 4, April 2010, pp. 1079–1082. [CrossRef] [Google Scholar]
  20. E. Munoz, J. Barrio, A. Etxebeste, P. G. Ortega, C. Lacasta, J. F. Oliver, et. al., ” Performance evaluation of MACACO: a multilayer Compton camera”, Phys. Med. Biol. 62 (2017) 7321–7341, DOI: [CrossRef] [Google Scholar]
  21. P. Sibczynski, A. Broslawski, A. Gojska, V. Kiptily, S. Korolczuk, R. Kwiatkowski, “Characterization of some modern scintillators recommended for use on large fusion facilities in g-ray spectroscopy and tomographic measurements of g-emission profiles”, Jun. 2017 Nukleonika 62(3):223 DOI:10.1515/nuka-2017-0032. [CrossRef] [Google Scholar]
  22. L. Nagornaya, S. Burachas, Y. Vostretsov, V. Martynov, V. Ryzhikov, “Studies of ways to reduce defects in CdWO4single crystals”, Journal of Crystal Growth 198/199 (1999) 877–880, DOI: 10.1016/S0022-0248(98)01236-6. [CrossRef] [Google Scholar]
  23. M. Grodzicka, M. Moszynski, T. Szczesniak, M. Szawlowskia, J. Baszak, “Characterization of 4×4 ch MPPC array in scintillation spectrometry”, 2012 IEEE Nuclear Science Symposium and Medical Imaging Conference Record (NSS/MIC), DOI:10.1109/NSSMIC.2012.6551118. [Google Scholar]
  24. B. Seitz, N. Campos Rivera, and A.G. Stewart, “Energy Resolution and Temperature Dependence of Ce:GAGG Coupled to 3 mm × 3 mm Silicon Photomultipliers”, IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 63, NO. 2, APRIL 2016 DOI: 10.1109/TNS.2016.2535235. [Google Scholar]
  25. F.G.A. Quaratiab, P. Dorenbosa, J. van der Biezenc, A Owensc, M. SelledL, P. Schotanusf, “Scintillation and detection characteristics of high-sensitivity CeBr3 gamma-ray spectrometers”, 2013 NIM A, 729 596-604, DOI: 10.1016/j.nima.2013.08.005. [CrossRef] [Google Scholar]
  26. K. Shimazoe, , A. Koyama, H. Takahashi, S. Sakuragi, Y. Yamasaki, “Fabrication and characterization of rectangular strontium iodide scintillator coupled to TSV-MPPC array”, NIM A 845 503-506, 2017, DOI: 10.1016/j.nima.2016.06.077 [CrossRef] [Google Scholar]
  27. M. Takabea, n, A. Kishimotoa, J. Kataokaa, S. Sakuragib, Y. Yamasaki, “Performance evaluation of newly developed SrI2(Eu) scintillator”, NIM A 831 260-264, 2016, DOI:10.1016/j.nima.2016.04.043. [CrossRef] [Google Scholar]
  28. A. J. González, F. Sanchez, S. Majewski, A. Aguilar, A. GonzálezMontoro, et. al., “Performance of large BGO arrays coupled to SiPM photosensors — Continued study”, 2015 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), 2015, pp. 1-4, DOI: 10.1109/NSSMIC.2015.7582017. [Google Scholar]
  29. Si APD, MPPC, Handbook chapter 3, E03, [Online]. Available: Accessed 14.07.2021. [Google Scholar]
  30. J. Valencia, B. Godfrey, M. Hamel, B. Maestas, E. Padilla, “Evaluation of a Silicon Photomultiplier Array as a Photomultiplier Tube Replacement”, 2019, SAND2019-6405C. Sandia National Laboratories2, Albuquerque, NM, USA. [Online]. Available: Accessed 14.07.2021. [Google Scholar]
  31. M. Ren, J. Zhou, B. Song, C. Zhang, M. Dong, R. Albarracin, “Towards Optical Partial Discharge Detection with Micro Silicon Photomultipliers”, Sensors 2017, 17(11), 2595, DOI: [CrossRef] [Google Scholar]
  32. R. Hawkes, A. Lucas, J. Stevick, G. Llosa, S. Marcatili, C. Piemonte, “Silicon photomultiplier performance tests in magnetic resonance pulsed fields”, 2007, IEEE Nuclear Science Symposium Conference Record, DOI:10.1109/NSSMIC.2007.4436860. [Google Scholar]
  33. A. Ulyanov, D. Murphy, J. Mangan, V. Gupta, W. Hajdas, at. al., “Radiation damage study of SensL J-series silicon photomultipliers using 101.4 MeV protons”, NIM A, 976 (2020) 164203, DOI: [CrossRef] [Google Scholar]
  34. D. Impiombato, S. Giarrusso, T. Mineo, , O. Catalano, C. Gargano, G. La Rosa, et. al., “Characterization and performance of the ASIC (CITIROC) front-end of the ASTRI camera”, NIM A, 794 (2015) 185-192, DOI:10.1016/j.nima.2015.05.028. [CrossRef] [Google Scholar]
  35. V. Nadig, D. Schug, B. Weissler, V. Schulz, “Evaluation of the PETsys TOFPET2 ASIC in multi-channel coincidence experiments”, EJNMMI Physics volume 8, Article number: 30 (2021), DOI: [CrossRef] [Google Scholar]
  36. K. Lacombe, J. Knodlseder, B. Houret, T. Gimenez, J. F. Olive, P. Ramon, “Characterization of silicon photomultipliers for new highenergy spacetelescopes”, NIM A, 912 (2018) 144-148, DOI: [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.