Open Access
EPJ Web Conf.
Volume 253, 2021
ANIMMA 2021 – Advancements in Nuclear Instrumentation Measurement Methods and their Applications
Article Number 11014
Number of page(s) 6
Section Current Trends in Development of Radiation Detectors
Published online 13 December 2021
  1. S. Davidson, E. Nardi, and Y. Nir, “Leptogenesis”, Phys. Rep. 466, 105 (2008). [Google Scholar]
  2. K. Dick, M. Lindner, M. Ratz, D. Wright, “Leptogenesis with Dirac neutrinos”, Phys.Rev.Lett. 84 (2000) 4039-4042 [Google Scholar]
  3. J. Schechter and J. W. F. Valle, “Neutrinoless double beta decay in SU(2)×U(1) theories”, Phys. Rev. D 25, 2951 (1982). [Google Scholar]
  4. E.K. Warburton, “Calculation of the Ca-48 (beta-) 48Sc decay rate”, Phys.Rev.C 31 (1985) 1896-1898 [Google Scholar]
  5. H. Heiskanen, M.T. Mustonen, J. Suhonen, “Theoretical half-life for beta decay of Zr-96”, J.Phys.G 34 (2007) 837-843 [Google Scholar]
  6. A. Barabash, “Precise Half-Life Values for Two-Neutrino Double-β Decay: 2020 Review”, Universe 6 (2020) 10, 159, ArXiv: 2009.14451 [nucl-ex] [Google Scholar]
  7. GERDA Collaboration, “Background-free search for neutrinoless double-β decay of 76Ge with GERDA”, Nature 544, 47-52 (2017). [Google Scholar]
  8. LEGEND Collaboration, “The Large Enriched Germanium Experiment for Neutrinoless Double Beta Decay (LEGEND)”, in AIP Conf.Proc. 1894 (2017) 1, 020027 [Google Scholar]
  9. LEGEND Collaboration, “The Large Enriched Germanium Experiment for Neutrinoless ββ Decay: LEGEND-1000 Preconceptual Design Report”, ArXiv: 2107.11462 [physics.ins-det] [Google Scholar]
  10. GERDA Collaboration, “Final Results of GERDA on the Search for Neutrinoless Double-β Decay”, Phys.Rev.Lett 125, 252502 (2020). [Google Scholar]
  11. J. Janicskó Csáthy, T. Bode, J. Kratz, S. Schönert, Ch. Wiesinger, “Optical fiber read-out for liquid argon scintillation light”, ArXiv: 1606.04254 [physics.ins-det] [Google Scholar]
  12. APPEC Committee, “Double Beta Decay APPEC Committee Report”, ArXiv: 1910.04688 [hep-ex] [Google Scholar]
  13. T. Heindl, T. Dandl, M. Hofmann, R. Krucken, L. Oberauer, W. Potzel, J. Wieser, A. Ulrich, “The scintillation of liquid argon”, EPL 91 (2010) 6, 62002 [Google Scholar]
  14. GERDA Collaboration, “Results on ββ decay with emission of two neutrinos or Majorons in 76Ge from GERDA Phase I”, Eur.Phys.J.C 75 (2015) 9, 416, ArXiv: 1501.02345 [nucl-ex] [Google Scholar]
  15. T. Doke, et al. “Let Dependence of Scintillation Yields in Liquid Argon”, Nucl.Instrum.Meth.A 269 (1988) 291-296 [Google Scholar]
  16. A. Hitachi, T. Takahashi, N. Funayama, K. Masuda, J. Kikuchi, and T. Doke, “Effect of ionization density on the time dependence of luminescence from liquid argon and xenon”, Phys. Rev. B 27, 5279 (1983) [Google Scholar]
  17. DEAP Collaboration, “The liquid-argon scintillation pulseshape in DEAP-3600”, Eur.Phys.J.C 80 (2020) 4, 303 [Google Scholar]
  18. A. Neumeier, M. Hofmann, L. Oberauer, W. Potzel, S. Schönert, T. Dandl, T. Heindl, A. Ulrich, and J. Wieser, “Attenuation of vacuum ultraviolet light in liquid argon”, Eur.Phys.J.C 72 (2012) 2190 [Google Scholar]
  19. WArP Collaboration, “Effects of Nitrogen contamination in liquid Argon”, JINST 5 (2010) P06003 [Google Scholar]
  20. M. Agostini, L. Pandola, P. Zavarise, O. Volynets, “GELATIO: A General framework for modular digital analysis of high-purity Ge detector signals”, JINST 6 (2011) P08013 [Google Scholar]
  21. R. Brun and F. Rademakers, “ROOT An Object Oriented Data Analysis Framework”, Proceedings AIHENP’96 Workshop, Lausanne, Sep. 1996, Nucl. Inst.Meth. in Phys. Res. A 389 (1997) 81-86. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.