Open Access
EPJ Web Conf.
Volume 255, 2021
EOS Annual Meeting (EOSAM 2021)
Article Number 07002
Number of page(s) 4
Section Topical Meeting (TOM) 9- Optics at Nanoscale (ONS)
Published online 18 November 2021
  1. V. Sorianello, M. Midrio, M. Romagnoli, Design optimization of single and double layer graphene phase modulators in SOI, Optics Express, 23, 6480 (2015) [Google Scholar]
  2. R. Amin, et al., Attojoule-efficient graphene optical modulators, Applied Optics, 57, D130 (2018) [Google Scholar]
  3. G. Kovacevic, C. Phare, S. Y. Set, M. Lipson, S. Yamashita, Ultra-high-speed graphene optical modulator design based on tight field confinement in a slot waveguide, Applied Physics Express, 11, 065102 (2018) [Google Scholar]
  4. V. Sorianello, et al., Graphene–silicon phase modulators with gigahertz bandwidth, Nature Photonics, 120, 40 (2018) [Google Scholar]
  5. V. Sorianello, G. Contestabile, M. Romagnoli, Graphene on silicon modulators, Journal of Lightwave Technology, 38, 2782 (2020) [Google Scholar]
  6. M. Mittendorff, S. S. Li, T. E. Murphy, Graphene-based waveguide-integrated terahertz modulator, ACS Photonics, 4, 316 (2017) [Google Scholar]
  7. Y. S. Tao, H. W. Shu, M. Jin, X. J. Wang, L. J. Zhou, W. W. Zou, Numerical investigation of the linearity of graphene-based silicon waveguide modulator, Optics Express, 27, 9013 (2019) [Google Scholar]
  8. J. Čtyroký, J. Petráček, V. Kuzmiak, P. Kwiecien, I. Richter, Silicon waveguides with graphene: coupling of waveguide mode to surface plasmons, Journal of Optics, 22, 095801 (2020) [Google Scholar]
  9. J. Čtyroký, J. Petráček, P. Kwiecien, I. Richter, V. Kuzmiak, Graphene on an optical waveguide: comparison of simulation approaches, Optical and Quantum Electronics, 52, 149 (2020) [Google Scholar]
  10. F. H. L. Koppens, D. E. Chang, F. J. G. de Abajo, Graphene plasmonics: a platform for strong light-matter interactions, Nano Letters, 11, 3370 (2011) [Google Scholar]
  11. J. Christensen, A. Manjavacas, S. Thongrattanasiri, F. H. L. Koppens, F. J. G. de Abajo, Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons, ACS Nano, 6, 431 (2012) [Google Scholar]
  12. N. Zhao, Z. X. Zhao, I. A. D. Williamson, S. Boutami, B. Zhao, S. Fan, High reflection from a one-dimensional array of graphene nanoribbons, ACS Photonics, 6, 339 (2019) [Google Scholar]
  13. K. O. Wedel, N. A. Mortensen, K. S. Thygesen, M. Wubs, Edge-dependent reflection and inherited fine structure of higher-order plasmons in graphene nanoribbons Phys. Rev. B, 99, 045411 (2019) [Google Scholar]
  14. H. W. Hou, J. H. Teng, T. Palacios, S. Chua, Edge plasmons and cut-off behavior of graphene nano-ribbon waveguides, Optics Communications, 370, 226 (2016) [Google Scholar]
  15. W. P. Huang, J. W. Mu, Complex coupled-mode theory for optical waveguides, Optics Express, 17, 19134 (2009) [Google Scholar]
  16. D. Marcuse, Light Transmission Optics, 2nd ed. (New York: Van Nostrand Reinhold), 1982 [Google Scholar]
  17. N. Vermeulen, J. L. Cheng, J. E. Sipe, H. Thienpont, Foundry-compatible SOI waveguides with a graphene top layer for wideband wavelength conversion, SPIE Proceedings 9891, 98911B (2016) [Google Scholar]
  18. A. Locatelli, G. E. Town, C. De Angelis, Graphene-based terahertz waveguide modulators, IEEE Transactions Terahertz Science Technology, 5, 351 (2015) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.