Open Access
Issue
EPJ Web Conf.
Volume 263, 2022
8th Complexity-Disorder Days 2021
Article Number 01013
Number of page(s) 18
DOI https://doi.org/10.1051/epjconf/202226301013
Published online 28 April 2022
  1. A. Farkas, Orthohydrogen, Parahydrogen and Heavy Hydrogen; Cambridge University Press: Cambridge, UK (1935) [Google Scholar]
  2. E. Ilisca, Ortho-Para Conversion of Hydrogen on Surfaces. Prog. Surf. Sci. 41, 213–336 (1992) [Google Scholar]
  3. K. Fukutani, T. Sugimoto, Ortho-Para Conversion of Molecular Hydrogen in Physisorption States on Solid Surfaces. Prog. Surf. Sci. 88, 279 (2013) [CrossRef] [Google Scholar]
  4. E. Ilisca, Hydrogen Conversion in Nanocages. Hydrogen 2, 160–206 (2021) [CrossRef] [Google Scholar]
  5. E.P. Wigner, Über die paramagnetische Umwandlung von Para-Orthowasserstoff. III. Part I Phys. Chem. Part II Solid State Phys. 23, 126–130 (1997) [Google Scholar]
  6. G. E. Schmauch, A. H. Singleton, Technical Aspects of Ortho-Parahydrogen Conversion. Ind. Eng. Chem. 56, 20–31 (1964) [CrossRef] [Google Scholar]
  7. E. Ilisca, E. S. Sugano, A new channel in ortho-para H2 conversion. Phys. Rev. Lett. 57, 2790 (1986) [Google Scholar]
  8. E. Ilisca, Magneto-optic and magneto-catalytic effect. J. Magn. Soc. Jpn. 11, 13 (1987) [Google Scholar]
  9. E. Ilisca, S. Sugano, Optical studies in ortho-para conversion of a hydrogen molecule on a magnetic surface. Chem. Phys. Lett. 149, 20–23 (1988) [CrossRef] [Google Scholar]
  10. B. I. Lundquist, Electron Transfer at Surfaces. In Electronic Processes at Solid Surfaces, E. Ilisca, K. Makoshi, Eds.; (World Scientific Pub Co Pte Ltd: Singapore city, Singapore, 1996) [Google Scholar]
  11. M. Bloom, Nuclear spin relaxation in hydrogen. Physics 23, 378–388 (1957) [Google Scholar]
  12. S. E. Nielsen, J. S. Dahler, Paramagnetic Catalysis of the Ortho-Parahydrogen Conversion. J. Chem. Phys. 46, 732 (1967) [CrossRef] [Google Scholar]
  13. P. W. Atkins, M. J. Clugston, Ortho-Para Hydrogen conversion in Paramagnetic Solutions. Mol. Phys. 27, 1619 (1974) [CrossRef] [Google Scholar]
  14. H. G. Hixson, M. J. Wojcik, M.J.M.S. Devlin, J. P. Devlin, V. Buch, Experimental and Stimulated Vibrational Spectra of H2 adsorbed in Amorphous Ice. J. Chem. Phys. 97, 753–767 (1992) [CrossRef] [Google Scholar]
  15. A. Züttel, A. Borgschulte, L. Schlapbach, Hydrogen as a Future Energy Carrier. (WILEY-VCH Verlag, GmbH & Co: Hoboken, NJ, USA, 2008) [Google Scholar]
  16. D. H. Weitzel, Standards. J. Res. Nat. Bur. A60, 2840 (1958) [Google Scholar]
  17. Survey study of the efficiency and economics of hydrogen liquefaction. Linde-Union Carbide (Report: Seadrift, TX, USA, 1975) [Google Scholar]
  18. E. Ilisca, E. Theoretical calculation of a new effect in ortho-para H2 conversion on magnetic surfaces. Phys. Rev. Lett. 24, 797 (1970) [CrossRef] [Google Scholar]
  19. E. Ilisca, Experimental evidence for a new effect in ortho-para H2 conversion on magnetic surfaces. Phys. Lett. 33A, 247 (1970) [CrossRef] [Google Scholar]
  20. E. Ilisca, A Simple Example of Ferromagnetic Catalysis. J. Vac. Sci. Technol. 25, 183 (1971) [Google Scholar]
  21. E. Ilisca, A. P. Legrand, Theoretical rates and correlation functions in o-p hydrogen conversion on paramagnetic surfaces. Phys. Rev. B 5, 4994 (1972) [CrossRef] [Google Scholar]
  22. E. Ilisca, E. Gallais, Orientation effect of the surface magnetization of ferromagnetic catalysts on the orthopara H2 conversion. Phys. Rev. B 6, 2858 (1972) [CrossRef] [Google Scholar]
  23. Y. Ishii, S. Sugano, Ortho-para conversion of hydrogen on magnetic surfaces. Surf. Sci. 127, 21–34 (1983) [CrossRef] [Google Scholar]
  24. M. Fujiwara, K. Niki, T. Okano, K. Fukutani, OrthoPara H2 Conversion on Cr2O3 (0001)/Cr (110) surfaces. J. Physics, Conf. Ser. 200, 22038 (2010) [Google Scholar]
  25. P. Avouris, D. Schmeisser, J.E. Demuth, Observation of Rotational Excitations of hydrogen adsorbed on Ag surfaces. Phys. Rev. Lett. 48, 199 (1982) [CrossRef] [Google Scholar]
  26. S. Andersson, J. Harris, J Observation of Rotational Transitions for H2, D2 and HD Adsorbed on Cu(100). Phys. Rev. Lett. 48, 545 (1982) [CrossRef] [Google Scholar]
  27. R. E. Palmer, R. F. Willis, Rotational States of Physisorbed Hydrogen on Graphite. Surf. Sci. 179, L1 (1987) [CrossRef] [Google Scholar]
  28. K. G. Petzinger, D.J. Scalapino, Para- to OrthoHydrogen Conversion on Magnetic Surfaces. Phys. Rev. B 8, 266–279 (1973) [CrossRef] [Google Scholar]
  29. E. Ilisca, Introduction to a theory of paramagnetic catalysis: the magnetic field effect. Phys. Rev. Lett. 40, 1535 (1978) [CrossRef] [Google Scholar]
  30. E. Ilisca, M. Debauche, J. L. Motchane, Quantum formulation of a magneto-catalytic reaction. Phys. Rev. B 22, 687–701 (1980) [CrossRef] [Google Scholar]
  31. E. Ilisca, M. Debauche, Surface spin polarization by rotational libration. Surf. Sci. 144, L449 (1984) [CrossRef] [Google Scholar]
  32. E. Ilisca, Theory of ortho-parahydrogen conversion catalyzed by “d” electrons. Chem. Phys. Lett. 168, 289 (1990) [CrossRef] [Google Scholar]
  33. K. Makoshi, E. M. R. Ilisca, Dipolar and contact processes in H2 o-p conversion on ionic surfaces. J. Phys. Condens. Matter 5, 7325 (1993) [CrossRef] [Google Scholar]
  34. M. Rami, K. Makoshi, E. Ilisca, Physical Conversion of H2 adsorbed on Cr2O3/Al2O3. Appl. Surf. Sci. 68, 197 (1993) [CrossRef] [Google Scholar]
  35. E. Ilisca, S. Paris, S. A charge transfer process in o-p H2 conversion induced by 3d impurities on a perovskite. Surf. Sci. 363, 347–353 (1996) [CrossRef] [Google Scholar]
  36. E. Ilisca, K. Bahloul, Orbital Paramagnetism and o-p H2 Conversion. J. Phys. B At. Mol. Opt. Phys. 29, 607 (1996) [CrossRef] [Google Scholar]
  37. S. Paris, E. Ilisca, Electron-Nucleus Resonances and Magnetic Field Acceleration in H2 conversion. J. Phys. Chem. A103, 4964 (1999) [CrossRef] [Google Scholar]
  38. E. Ilisca, S. Paris, Magnetic Field Acceleration of the op H2 conversion on Transition Oxides. Phys. Rev. Lett. 82, 1788 (1999) [CrossRef] [Google Scholar]
  39. E. Ilisca, Ortho-para H2 conversion on a cold Ag(111) metal surface. Phys. Rev. Lett. 66, 667–670 (1991) [CrossRef] [PubMed] [Google Scholar]
  40. E. Ilisca, Ortho-para hydrogen conversion on noble metals. Mod. Phys. Lett. B 5, 1191–1198 (1991) [CrossRef] [Google Scholar]
  41. E. Ilisca, Molecule-surface complexes and catalytic reaction. Surface Science 242, 470 (1991) [CrossRef] [Google Scholar]
  42. E. Ilisca, H2 conversion on noble metals. J. Phys. I 1, 1785 (1991) [Google Scholar]
  43. E. Ilisca, Orbital process in o-p H2 conversion on noble metals. J. Phys. Cond. Matter 4, 297 (1992) [CrossRef] [Google Scholar]
  44. E. Ilisca, Towards an hyperfine measure of noble metals Image “Surface states”. Optics Comm. 89, 399 (1992) [CrossRef] [Google Scholar]
  45. K. Fukutani, K. Yoshida, M. Wilde, W. A. Diño, M. Matsumoto, T. Okano, Photostimulated Desorption and Ortho-Para Conversion of H2 on Ag Surfaces. Phys. Rev. Lett. 90, 096103 (2003) [CrossRef] [PubMed] [Google Scholar]
  46. M. Sakurai, T. Okano, Y. Tuzi, Ortho-para conversion of n-H2 physisorbed on Ag(111) near two-dimensional condensation conditions. Appl. Surf. Sci. 33-34, 245251 (1998) [Google Scholar]
  47. K. Niki, T. Kawauchi, M. Matsumoto, K. Fukutani, T. Okano, Mechanism of Ortho-Para H2 Conversion on Ag surfaces. Phys. Rev. B 77, 201404 (2008) [CrossRef] [Google Scholar]
  48. E. V. Lavrov, J. Weber, Ortho and Para Interstitial H2 in Silicon. Phys. Rev. Lett. 89, 215501 (2002) [CrossRef] [PubMed] [Google Scholar]
  49. A. W. R. Leitch, V. Alex, J. Weber, Raman Spectroscopy of Hydrogen Molecules in Crystalline Silicon, Phys. Rev. Lett. 81, 421 (1998) [CrossRef] [Google Scholar]
  50. E. R. Pritchard, M. J. Ashwin, J. Tucker, R. C. Newman, Isolated interstitial hydrogen molecules in hydrogenated crystalline silicon, Phys. Rev. B 57, R15048 (1998) [CrossRef] [Google Scholar]
  51. E. E. Chen, M. Stavola, W. B. Fowler, P. Walters, Key to Understanding Interstitial H2 in Si, Phys. Rev. Lett. 88, 105507 (2002) [CrossRef] [PubMed] [Google Scholar]
  52. P. L. Chapovsky, E. Ilisca, E. Theory of nuclear-spin conversion in ethylene. Phys. Rev. A 63, 62504 (2001) [CrossRef] [Google Scholar]
  53. H. Ueta, N. Watanabe, T. Hama, A. Kouchi, Surface Temperature Dependence of Hydrogen Ortho-Para Conversion on Amorphous Solid Water. Phys. Rev. Lett. 116, 253201 (2016) [CrossRef] [PubMed] [Google Scholar]
  54. M. Tsuge, T. Hama, Y. Kimura, A. Kouchi, N. Watanabe, Interactions of Atomic and Molecular Hydrogen with a Diamond-like Carbon Surface: H2 Formation and Desorption. Astrophys. J. 878, 23 (2019) [CrossRef] [Google Scholar]
  55. N. Watanabe, M. Tsuge, Experimental Approach to Physicochemical Hydrogen Processes on Cosmic Ice Dust. J. Phys. Soc. Jpn. 89, 051015 (2020) [CrossRef] [Google Scholar]
  56. T. Sugimoto, K. Fukutani, Electric-field-induced nuclear-spin flips mediated by enhanced spin-orbit coupling. Nat. Phys. 7, 307 (2011) [CrossRef] [Google Scholar]
  57. S. K. Estreicher, K. Wells, P.A. Fedders, P. J. Ordejon, Dynamics of interstitial hydrogen molecules in crystalline silicon. J. Phys. Condens. Matter 13, 62716283 (2001) [CrossRef] [Google Scholar]
  58. C. M. Cunningham, H. L. Johnston, H.L. The surface catalysis of the ortho-to para-conversion in liquid hydrogen by paramagnetic oxides on alumina. J. Am. Chem. Soc. 80, 2377 (1958) [CrossRef] [Google Scholar]
  59. T. Das, S.-C. Kweon, I. W. Nah, S. W. Karng, J.-G. Choi, I.-H. Oh, Spin conversion of hydrogen using supported iron catalysts at cryogenic temperature. Cryogenics 69, 36–43 (2015) [CrossRef] [Google Scholar]
  60. J. H. Kim, S. W. Karng, I.-H. Oh, I. W. Nah, Orthopara hydrogen conversion characteristics of amorphous and mesoporous Cr2O3 powders at a temperature of 77 K. Int. J. Hydrog. Energy 40, 14147–14153, (2015) [CrossRef] [Google Scholar]
  61. M. Matsumoto, J. H. Espenson, Kinetics of the Interconversion of Parahydrogen and Orthohydrogen Catalyzed by Paramagnetic Complex Ions. J. Am. Chem. Soc. 127, 11447–11453 (2005) [CrossRef] [PubMed] [Google Scholar]
  62. E. Sartori, M. Ruzzi, M.N.J. Turro, J. D. Decatur, D. C. Doetschman, R. G. Lawler, A. L. Buchachenko, Y. Murata, K. Komatsu, Nuclear Relaxation of H2 and H2@C60 in Organic Solvents. J. Am. Chem. Soc. 128, 14752–14753 (2006) [CrossRef] [PubMed] [Google Scholar]
  63. C. Aroulanda, L. Starovoytova, D. Canet, Longitudinal Nuclear Spin Relaxation of Ortho- and Para-Hydrogen Dissolved in Organic Solvents. J. Phys. Chem. A 111, 10615–10624 (2007) [CrossRef] [PubMed] [Google Scholar]
  64. D. Canet, S. Bouguet-Bonnet, C. Aroulanda, F. Reineri, About Long-Lived Nuclear Spin States Involved in Para-Hydrogenated Molecules. J. Am. Chem. Soc. 129, 1445–1449 (2007) [Google Scholar]
  65. E. Sartori, M. Ruzzi, R. G. Lawler; N. J. Turro, Nitroxide Paramagnet-Induced Para-Ortho Conversion and Nuclear Spin Relaxation of H2 in Organic Solvents. J. Am. Chem. Soc. 130, 12752–12756 (2008) [CrossRef] [PubMed] [Google Scholar]
  66. C. Terenzi, S. Bouguet-Bonnet, D. Canet, Direct 1H NMR evidence of spin-rotation coupling as a source of para-ortho-H2 conversion in diamagnetic solvents. J. Chem. Phys. 146, 154203 (2017) [CrossRef] [PubMed] [Google Scholar]
  67. E. Ilisca, Nuclear Spin Relaxation, Conversion, and Polarization of Molecular Hydrogen in Paramagnetic Solvents. J. Phys. Chem. C 123, 16631–16640 (2019) [CrossRef] [Google Scholar]
  68. E. Ilisca, Hydrogen conversion on non-magnetic insulating surfaces. EPL Europhys. Lett. 104, 18001 (2013) [CrossRef] [Google Scholar]
  69. E. Ilisca, F. Ghiglieno, Electron exchanges in nuclear spin conversion of hydrogen physisorbed on diamagnetic insulators. Eur. Phys. J. B 87, 235–264 (2014) [CrossRef] [Google Scholar]
  70. E. Ilisca, F. Ghiglieno, Nuclear conversion theory: molecular hydrogen in non-magnetic insulators. R. Soc. Open Sci. 3, 160042 (2016) [Google Scholar]
  71. E. Ilisca, F. Ghiglieno, Electronuclear paths in the nuclear conversion of molecular hydrogen in silicon. Chem. Phys. Lett. 667, 233–237 (2017) [CrossRef] [Google Scholar]
  72. S. A. FitzGerald, T. Yildirim, L. J. Santodonato, D. A. Neumann, J. R. D. Copley, J. J. Rush, F. Trouw, Quantum dynamics of interstitial H2 in solid C60. Phys. Rev. B 60, 6439–6451 (1999) [CrossRef] [Google Scholar]
  73. S. A. FitzGerald, S. Forth, M. Rinkoski, Induced infrared absorption of molecular hydrogen in solid C60. Phys. Rev. B 65, 140302 (2002) [CrossRef] [Google Scholar]
  74. S. A. Fitzgerald, H. O. H. Churchill, P.M. Korngut, C. B. Simmons, Y. E. Strangas, Cryogenic apparatus for diffuse reflection infrared spectroscopy with high- pressure capabilities. Rev. Sci. Instrum. 77, 93110 (2006) [Google Scholar]
  75. S. A. FitzGerald, K. Allen, P. Landerman, J. Hopkins, J. Matters, R. Myers, J. L. C. Rowsell, Quantum dynamics of adsorbed in the microporous framework MOF-5 analyzed using diffuse reflectance infrared spectroscopy. Phys. Rev. B 77, 224301 (2008) [CrossRef] [Google Scholar]
  76. S. A. FitzGerald, J. Hopkins, B. Burkholder, M. Friedman, J. L. C. Rowsell, Quantum dynamics of adsorbed normal- and para-H2, HD, and D2 in the microporous framework MOF-74 analyzed using infrared spectroscopy. Phys. Rev. B 81, 104305 (2010) [CrossRef] [Google Scholar]
  77. S. A. FitzGerald, B. Burkholder, M. Friedman, J. B. Hopkins, C. J. Pierce, J. M. Schloss, B. Thompson, J. L. C. Rowsell, Metal-Specific Interactions of H2 Adsorbed within Isostructural Metal Organic Frameworks. J. Am. Chem. Soc. 133, 20310 (2011) [CrossRef] [PubMed] [Google Scholar]
  78. M. Chehrouri, J.-H. Fillion, H. Chaabouni, H. Mokrane, E. Congiu, F. Dulieu, E. Matar, X. Michaut, J. L. Lemaire, Nuclear Spin Conversion of Molecular Hydrogen on Amorphous Solid Water in the Presence of O2 traces. Chem. Phys. 13, 2172 (2011) [Google Scholar]
  79. K. Kuwahata, T. Hama, A. Kouchi, N. Watanabe, Signatures of Quantum-Tunneling Diffusion of Hydrogen Atoms on Water Ice at 10 K. Phys. Rev. Lett. 115, 133201 (2015) [CrossRef] [PubMed] [Google Scholar]
  80. T. Kosone, A. Hori, E. Nishibori, Y. Kubota, A. Mishima, M. Ohba, H. Tanaka, K. Kato, J. Kim, J. A. Real, et al., Coordination nano-space as stage of hydrogen ortho-para conversion. R. Soc. Open Sci. 2, 150006 (2015) [CrossRef] [Google Scholar]
  81. M. Hiller, E. V. Lavrov, J. Weber, Raman scattering study of H2 in Si. J. Phys. Rev. B 74, 235214 (2006) [CrossRef] [Google Scholar]
  82. M. Hiller, E. V. Lavrov, J. Weber. Ortho-Para Conversion of Interstitial in Si. Phys. Rev. Lett. 98, 055504 (2007) [CrossRef] [PubMed] [Google Scholar]
  83. C. Peng, M. Stavola, W. B. Fowler, M. Lockwood, Ortho-para transition of interstitial H2 and D2 in Si. Phys. Rev. B 80, 125207 (2009) [CrossRef] [Google Scholar]
  84. S. Koch, E. V. Lavrov, J. Weber, Towards understanding the hydrogen molecule in ZnO. J. Phys. Rev. B 90, 205212 (2014) [CrossRef] [Google Scholar]
  85. Y. Murata, M. Murata, K. Komatsu, 100% Encapsulation of a Hydrogen Molecule into an OpenCage Fullerene Derivative and Gas-Phase Generation of H2@C60. J. Am. Chem. Soc. 125, 7152–7153, (2003) [CrossRef] [PubMed] [Google Scholar]
  86. M. Carravetta, Y. Murata, M. Murata, I. Heinmaa, R. Stern, A. Tontcheva, A. Samoson, Y. Rubin, K. Komatsu, M. H. Levitt. Solid-State NMR Spectroscopy of Molecular Hydrogen Trapped Inside an Open-Cage Fullerene. J. Am. Chem. Soc. 126, 4092–4093, (2004) [CrossRef] [PubMed] [Google Scholar]
  87. K. Komatsu, M. Murata, Y. Murata. Encapsulation of Molecular Hydrogen in Fullerene C60 by Organic Synthesis. Science 307, 238–240 (2005) [CrossRef] [PubMed] [Google Scholar]
  88. M. Murata, Y. Murata, K. Komatsu. Synthesis and Properties of Endohedral C60 Encapsulating Molecular Hydrogen. J. Am. Chem. Soc. 128, 8024–8033 (2006) [CrossRef] [PubMed] [Google Scholar]
  89. M. Carravetta, O. G. Johannessen, M. Levitt, I. Heinmaa, R. Stern, A. Samoson, A. Horsewill, Y. Murata, K. Komatsu, Cryogenic NMR spectroscopy of endohedral hydrogen-fullerene complexes. J. Chem. Phys. 124, 104507 (2006) [CrossRef] [PubMed] [Google Scholar]
  90. M. Carravetta, A. Danquigny, S. Mamone, F. Cuda, O. G. Johannessen, I. Heinmaa, K. Panesar, R. Stern, M. C. Grossel, A. J. Horsewill et al. Solid-state NMR of endohedral hydrogen-fullerene complexes. Chem. Phys. 9, 4879–4894 (2007) [Google Scholar]
  91. N. J. Turro, J. Y.-C. Chen, E. Sartori, M. Ruzzi, A. Marti, R. Lawler, S. Jockusch, J. López-Gejo, K. Komatsu, Y. Murata, The Spin Chemistry and Magnetic Resonance of H2@C60. From the Pauli Principle to Trapping a Long Lived Nuclear Excited Spin State inside a Buckyball. Accounts Chem. Res. 43, 335–345 (2010) [Google Scholar]
  92. M. Ge, U. Nagel, D. Hüvonen, T. Rõõm, S. Mamone, M. Levitt, M. Carravetta, Y. Murata, K. Komatsu, J.Y.-C. Chen et al., Interaction potential and infrared absorption of endohedral H2 in C60. J. Chem. Phys. 134, 054507 (2011) [CrossRef] [PubMed] [Google Scholar]
  93. J.Y.-C. Chen, Y. Li, M. Frunzi, X. Lei, Y. Murata, R. G. Lawler, N. J. Turro, Nuclear Spin Isomers of guest molecules in H2@C60 and other fullerenes. Phil. Trans. R. Soc. A 371, 20110628 (2013) [CrossRef] [PubMed] [Google Scholar]
  94. S. Mamone, M. R. Johnson, J. Ollivier, S. Rols, M. H. Levitt, A. J. Horsewill, Symmetry-breaking in theH2@C60 endofullerene revealed by inelastic neutron scattering at low temperature. Chem. Phys. 18, 1998–2005 (2015) [Google Scholar]
  95. E. Ilisca, Electromagnetic nuclear spin conversion: Hydrogen on amorphous solid water. Chem. Phys. Lett. 713, 289–292 (2018) [CrossRef] [Google Scholar]
  96. C. R. Bowers, D. P. Weitekamp, Transformation of symmetrization order to nuclear-spin magnetization by chemical reaction and nuclear magnetic resonance. Phys. Rev. Lett. 57, 2645–2648 (1986) [CrossRef] [PubMed] [Google Scholar]
  97. F. D. Natterer, F. Patthey, H. Brune, Distinction of Nuclear Spin States with the Scanning Tunneling Microscope. Phys. Rev. Lett. 111, 175303 (2013) [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.