Open Access
Issue
EPJ Web Conf.
Volume 264, 2022
EFM21 – 15th International Conference “Experimental Fluid Mechanics 2021”
Article Number 01027
Number of page(s) 8
Section Contributions
DOI https://doi.org/10.1051/epjconf/202226401027
Published online 11 July 2022
  1. E. O. Smith and A. J. Neely. The impact of gas turbine compressor rotor bow on aircraft operations. The Aeronautical Journal. Royal Aeronautical Society, December 2017, 121(1246), pp. 1808-1832. Available on: doi:10.1017/aer.2017.117 [CrossRef] [Google Scholar]
  2. X. Yang and S. Kong. Numerical study of natural convection states in a horizontal concentric cylindrical annulus using SPH method. Engineering Analysis with Boundary Elements. December 2019, 2019. Available on: doi:10.1016/j.enganabound.2019.02.007 [Google Scholar]
  3. P. T. Zubkov and E. I. Narygin. Numerical Study of Unsteady Natural Convection in a Horizontal Annular Channel. Microgravity Science and Technology. June 2020, 2020(32), pp. 579-586. Available on: doi:10.1007/s12217-020-09791-2 [CrossRef] [Google Scholar]
  4. E. Abu-Nada, Z. Masoud and A. Hijazi. Natural convection heat transfer enhancement in horizontal concentric annuli using nanofluids. International Communications in Heat and Mass Transfer. February 2008, 35(2008), pp. 657-665. Available on: doi:10.1016/j.icheatmasstransfer.2007.11.004 [CrossRef] [Google Scholar]
  5. N. Francis, S. Webb, M. Itamura and D. Janes. CFD Calculation of Internal Natural Convection in the Annulus Between Horizontal Concentric Cylinders. International Communications in Heat and Mass Transfer. Sandia National Laboratories, October 2002, (SAND2002-3132). Available on: doi:10.1115/HT2003-47515 [Google Scholar]
  6. Y. Wang, J. Chen and W. Zhang. Natural convection in a circular enclosure with an internal cylinder of regular polygon geometry. AIP Advances 9. June 2019, 065023(2019). Available on: doi:10.1063/1.5100892 [Google Scholar]
  7. J. M. Prusa and L. Yao. Natural Convection Heat Transfer Between Eccentric Horizontal Cylinders. Journal of Heat Transfer. Lisbon, Portugal, February 1983, 105(1), pp. 108-116. Available on: doi:10.1115/1.3245527 [CrossRef] [Google Scholar]
  8. J. Pařez, P. Rohan and T. Vampola. Heat Transfer in Double Annular due to Natural Convection. IOP Conference Series: Materials Science and Engineering. Prague, Czech Republic, October 2021, 1190(2021). Available on: doi:10.1088/1757-899X/1190/1/012002 [Google Scholar]
  9. E.L.M. Padilla and A. Silveira-Neto. Large-eddy simulation of transition to turbulence in natural convection in a horizontal annular cavity. International Journal of Heat and Mass Transfer. July 2008, 2008(51). Available on: doi:10.1016/j.ijheatmasstransfer.2007.07.025 [Google Scholar]
  10. G. Krishnayatra, S. Tokas, R. Kumar and M. Zunaid. 3 Dimensional CFD analysis of Laminar flow Natural Convection of Hollow Cylinder with Annular Fins. Proceedings of the 5th World Congress on Mechanical, Chemical, and Material Engineering. Lisbon, Portugal, August 2019, (HTFF 181). Available on: doi:10.11159/htff19.181 [Google Scholar]
  11. S. Solnař, L. Popelka, M. Dostál, Cooling turboprop engine during shutdown. 13th International Conference on Experimental Fluid Mechanics (EFM 2018): EPJ Web of Conferences Volume 213, 2018. ISBN 9781510889668. [Google Scholar]
  12. S. W. Churchill and H.S. Chu, Correlating equations for laminar and turbulent free convection from a horizontal cylinder, International Journal of Heat and Mass Transfer, 1975, Volume 18, Issue 9, pp1049-1053, ISSN 0017-9310 [CrossRef] [Google Scholar]
  13. R. B. Bird, W. E. Stewart and E. N. Ligthfoot. Transport Phenomena (John Wiley & Sons, Inc., New York / Chichester / Weinheim / Brisbane / Singapore / Toronto, 2002) [Google Scholar]
  14. X. Yang and S. Kong. Numerical study of natural convection states in a horizontal concentric cylindrical annulus using SPH method. Engineering Analysis with Boundary Elements 2019. December 2019. Available on: doi:10.1016/j.enganabound.2019.02.007 [Google Scholar]
  15. M. P. King, M. Wilson and J. M. Owen. RayleighBénard Convection in Open and Closed Rotating Cavities. J. Eng. Gas Turbines Power [online]. April 2007, 129 (2), pp. 305-311. Available on: doi:10.1115/1.2432898 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.